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Abstract

Most existing ontology matching methods utilize the literal information to discover align-
ments. However, some literal information in ontologies may be opaque and some ontologies
may not have sufficient literal information. In this paper, these ontologies are named as
weak informative ontologies (WIOs) and it is challenging for existing methods to matching
WIOs. On one hand, string-based and linguistic-based matching methods cannot work well
for WIOs. On the other hand, some matching methods use external resources to improve
their performance, but collecting and processing external resources is still time-consuming.
To address this issue, this paper proposes a practical method for matching WIOs by employ-
ing the ontology structure information to discover alignments. First, the semantic subgraphs
are extracted from the ontology graph to capture the precise meanings of ontology elements.
Then, a new similarity propagation model is designed for matching WIOs. Meanwhile, in
order to avoid meaningless propagation, the similarity propagation is constrained by se-
mantic subgraphs and other conditions. Consequently, the similarity propagation model
ensures a balance between efficiency and quality during matching. Finally, the similarity
propagation model uses a few credible alignments as seeds to find more alignments, and
some useful strategies are adopted to improve the performance. This matching method for
WIOs has been implemented in the ontology matching system Lily. Experimental results
on public OAEI benchmark datasets demonstrate that Lily significantly outperforms most
of the state-of-the-art works in both WIO matching tasks and general ontology matching
tasks. In particular, Lily increases the recall by a large margin, while it still obtains high
precision of matching results.

Keywords: ontology matching, weak informative ontology, similarity propagation,
semantic subgraph

1. Introduction

More and more ontologies are created and used distributively by different communities
in the past few decades. Ontology users or engineers would integrate or process multiple
ontologies in practical applications. However, ontologies themselves could be heterogeneous.

Email address: pwang@seu.edu.cn (Peng Wang)

Preprint submitted to SCIENCE CHINA: Information Sciences December 4, 2023

ar
X

iv
:2

31
2.

00
33

2v
1 

 [
cs

.A
I]

  1
 D

ec
 2

02
3



It is necessary to integrate various ontologies and enable cooperation between them. On-
tology matching, which discovers alignments between ontologies, aims to provide a common
layer from which heterogeneous ontologies could exchange information in semantically sound
manners [1, 2].

Many ontology matching methods have been proposed [3, 4, 5, 6, 7, 8, 9]. Generally,
calculating the literal similarity is the most popular matching technique. However, not
all ontologies provide sufficient, clear, and precise literal information for describing the
semantics of elements in ontologies. For example, in the medical domain, the adult mouse
anatomy ontology 1 uses unique codes like MA 0000436 to name concepts, and every term
in geneontology 2 has a unique seven digit identifier GO ID like GO:0006915. In many
ontologies, we also notice that some elements have no enough comments or labels to help
users to understand their meanings. For another example, the 248-266 ontologies in the
OAEI (Ontology Alignment Evaluation Initiative) 3 benchmark dataset are such special
cases, in which most labels are meaningless strings and even do not have any comment.
Actually, these examples are not rare in real-world ontologies, and users still usually meet
ontology elements with opaque labels or lack of sufficient information that cannot help
users to understand the elements. In some application domains such as semantic Web of
Things [10], electric power grid [11, 12] and Industry 4.0 [13], ontologies often miss lexical
layer instead of lots of human-unreadable IP addresses, linked sensors, electric switches,
machine tools and products. This paper calls an ontology without sufficient or clear literal
information the weak informative ontology (WIO).

For this situation, string-based and linguistic-based matching methods cannot work well
and will miss a lot of alignments, which leads to low recall of matching results. Therefore,
it is necessary to find a feasible solution to solve the problem of matching weak informative
ontologies. Utilizing the structure information is a natural idea to compensate for string-
based and linguistic-based methods. Here, the structure-based ontology matching does not
mean matching geometrical graphs, which cannot deal with the semantic information in
ontologies. Namely, its matching results would have no meaning in semantics. Therefore,
traditional graph matching algorithms [14] are not suitable here.

Most structure-based ontology matching methods [15, 16] usually employ the similar-
ity propagation idea [17, 18]: similar objects are related to similar objects, which assures
that more alignments can be found by providing few alignments as seeds. Several similarity
propagation models have been proposed for matching database schemas or XML schemas
[17, 18, 19, 20]. However, these algorithms cannot be used for ontology matching problem
directly. For example, Blondel’s graph matching algorithm [19] cannot obtain good align-
ments for matching ontologies, because this algorithm directly treats an ontology as a graph
and ignores the semantic information in the ontology.

To address the issue of matching WIOs, this paper attempts to propose a practical match-
ing method which is inspired by our previous work [21]. First, we generalize and redefine

1http://web.informatik.uni-mannheim.de/oaei/anatomy11/index.html
2http://geneontology.org/
3http://oaei.ontologymatching.org
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the problem as the weak informative ontology matching problem. Second, we introduce the
semantic subgraph to describe elements in ontologies, which is the foundation of our solu-
tion, and present the algorithm for extracting semantic subgraphs. Third, we address how
to use semantic subgraphs to build a matcher, which can provide credible seeds for subse-
quent similarity propagation. Fourth, we focus on discussing the new similarity propagation
model for ontology matching and corresponding similarity propagation strategies. Finally,
we provide more comprehensive experimental results to demonstrate the performance of our
method.

The main original contributions of this paper are as follows. (1) This paper proposes
semantic subgraphs to capture precise meanings of ontology elements. (2) A new similarity
propagation model based on semantic subgraphs is proposed for matching weak informative
ontologies. This is a novel similarity propagation model for matching ontologies. The prop-
agation conditions are not only strict but also reasonable for ontology characteristics. In
addition, the similarity propagation is constrained by semantic subgraphs, that can avoid
meaningless propagation and improve the matching performance. Therefore, compared to
the classical general similarity propagation model Similarity Flooding [17], this model is
more specific and ensures the balance between matching efficiency and quality. (3) Based on
the semantic subgraphs, a matcher using semantic description documents is proposed, and it
provides few credible alignments as seeds to the similarity propagation model. Moreover, the
similarity propagation model adopts some useful strategies to improve the matching perfor-
mance. (4) Experimental results show that our method performs well not only for matching
weak informative ontologies but also for matching general ontologies. Especially, our method
increases the recall by a large margin while still obtains high precision of matching results.

The remainder of this paper is organized as follows: Section 2 addresses the weak infor-
mative ontology matching problem. Section 3 presents an overview of the proposed method.
Section 4 discusses the ontology graph and its processing. Section 5 introduces the basic
principle of semantic subgraphs. Section 6 details the method for extracting semantic sub-
graphs from ontology graphs. Section 7 discusses the similarity propagation model based on
semantic subgraphs. Section 8 analyzes and compares different propagation scale strategies.
Section 9 describes the matcher using semantic subgraphs. Section 10 presents the experi-
mental results and corresponding discussions. Section 11 is an overview of related work and
Section 12 is the conclusion.

2. Problem Statement and Analysis

Usually, an ontology contains concepts, properties, instances and axioms. We follow the
work in [6, 7] and give a formal definition for the ontology matching problem.

Definition 1 (Ontology Matching). The matching between two ontologies O1 and O2

is: M= {mk|mk =<ei, ej, r, s>}, where M is an alignment; mk denotes a correspondence
with a tuple < ei, ej, r, s >; ei and ej represent the expressions which are composed of
elements from O1 and O2 respectively; r is the semantic relation between ei and ej, and r
could be equivalence (=), generic/specific (⊒/⊑), disjoint (⊥) and overlap (⊓), etc.; s is the
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confidence about an alignment and typically in [0, 1] range. Therefore, an alignmentM is
a set of correspondences mk.

This paper only focuses on correspondences of concept−concept and property−property
with equivalence relation.

If we have enough and clear literal information about all elements, alignments can be
discovered easily. However, real-world ontologies cannot always provide such ideal literal
information. Figure 1 shows a matching scenario in OAEI. All concepts of ontology A have
necessary comments or labels. However, in ontology B, some elements, such as izxnquo and
zdqssqdb, have meaningless labels and there are no comments to explain these concepts.
In this matching scenario, for some elements like A:Conference and B:ScientificMeeting,
we can easily calculate matching similarities by linguistic-based or string-based techniques.
However, we cannot calculate the similarities for element pairs which contain opaque ele-
ments. For example, the similarity between A:Institution and B:izxnquo is difficult to be
calculated. Such opaque elements appear in ontologies for two possible reasons. First, ontol-
ogy engineers do not provide sufficient annotations or comments for all elements, that will
make some elements lack enough information to be understood. Second, to name elements,
ontology engineers would use some special codes, which cannot be understood by others.
For instance, concept Address may be named as Add , Adr or Dizhi (in Chinese spelling).
We call such elements the weak informative elements and define as follows.

organizer

event

event

A proceedings may be ...

A school or university

The location of an event

rdfs:comment

rdfs:subClassOf

rdfs:comment rdfs:comment

Ontology A Ontology B

Organization

Institution

ConferenceSchool

Proceedings

Organization

izxnquo

ScientificMeetingHigherEducationInstitution

School University Workshop zqedzbx

zdqssqdb

Matching Similarities

(A:Organization, B:Organization)=0.90

(A:School, B:School)=0.80

(A:Conference, B: ScientificMeeting)=0.65

(A:Institution, B:HigherEducationInstitution)=0.55

(A:School, B:University)=0.40

(A:Proceedings, B:Workshop)=0.30

(A:Conference, B:Workshop)=0.30

(A:Institution, B:izxnquo)=  ?

(A:Proceedings, B:zdqssqdb)=  ?

(A:Conference, B:zqedzbx)=  ?

……

rdfs:subClassOf

Figure 1: An weak informative ontology matching scenario

Definition 2 (Weak Informative Element). Given an ontology element e and a lex-
icon L , let De be the set of words in e’s literal information including identities, labels,
comments and annotations. |De ∩L| denotes the number of words contained in both L and

De. De can not be ∅ and |De| ≥ 1. If |De∩L|
|De| < ϕ, e is a weak informative element, where ϕ

is a small threshold value in [0,0.5].
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In this paper, ϕ is set to 0.25, and the lexicon L is WordNet 4. For a weak informa-
tive element e, its meaning is difficult to be understood according to corresponding literal
information.

Therefore, if an ontology contains a certain proportion weak informative elements, it is
difficult to be understood. We call such an ontology the weak informative ontology and
define as follows.

Definition 3 (Weak Informative Ontology). Given an ontology O with N elements,
let w be the number of weak informative elements and δ be a predefined threshold in [0, 1],
if w

N
> δ, O is a weak informative ontology (WIO).

For the reason that building an ontology is a time-consuming and error-prone process,
an ontology would contain some weak informative elements, which make matching methods
difficult to find alignments. Table 1 shows a survey of weak informative ontologies for 10
ontologies in OAEI2008 benchmark dataset 5. We manually examine these ontologies and
count the number of weak informative elements in each ontology. Column 2 to column 4 are
the ratio of weak informative elements in concepts, properties and instances, respectively.
The w/N value is the total ratio between number of weak informative elements and total
number of elements. The predefined threshold δ = 0.25, that means if the total ratio is
larger than 0.25, users cannot understand the ontology well. Consequently, 7 ontologies in
Table 1 are weak informative ontologies. The last column shows matching results ( average,
best and worst F1-measure) of 6 classic systems [22] (Aflood, AROMA, ASMOV, DSSim,
GeroMe and MapPSO) and 2 new systems (AML [23, 24] and LogMap [25, 26]). According
to matching results, there is a correlation between whether the ontologies are WIO and the
average matching results of ontology matching system over them.

Therefore, it is necessary to find a new way to discover alignments for weak informative
ontologies. Researchers have to utilize ontology structure information to compensate for the
lack of literal information. Although an ontology can be represented as a graph, ontology
matching is not equal to the graph matching problem, in which a correspondence between
two elements not only means that the elements are similar in geometrical perspective, more
importantly, but also are similar in semantics. Moreover, graph matching is an NP problem
[14], so it cannot match ontologies efficiently. For example, we attempt to use the graph
matching API provided by SOQA − SimPack [27] to match ontology graphs, and we find
that it needs more than several days or even several weeks for matching two normal size
ontologies. Most importantly, graph topology information cannot represent semantics in
ontologies, so a geometrical graph similarity cannot imply the semantic similarity. Therefore,
it is not suitable to treat ontology matching as the graph matching problem.

Most structure-based ontology matching methods are inspired by the simple idea: similar
objects are related to similar objects. This idea also derives some heuristic rules, such as
concepts may be similar when their super/sub concepts are similar and concepts may be

4https://wordnet.princeton.edu
5http://oaei.ontologymatching.org/2008/benchmarks/
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Table 1: A survey of weak informative ontologies on the sample of OAEI2008 benchmark (δ=0.25)

ontology weak informative elements/all elements
w/N is WIO

matching results
ID concepts properties instances (Average, Best, Worst )

101 0/34 0/72 0/55 0.00 No 0.97, 1.00, 0.88
201 3/34 11/72 0/55 0.07 No 0.81, 1.00, 0.12
202 31/34 65/72 55/55 0.94 Yes 0.46, 0.88, 0.05
203 0/34 5/72 15/55 0.12 No 0.97, 1.00, 0.88
248 31/34 65/72 22/55 0.75 Yes 0.34, 0.81, 0.04
250 31/34 0/8 22/55 0.55 Yes 0.34, 0.53, 0.08
252 24/27 63/73 21/55 0.70 Yes 0.33, 0.82, 0.06
254 33/36 0/8 23/55 0.57 Yes 0.28, 0.43, 0.00
258 31/34 64/72 0/0 0.90 Yes 0.20, 0.62, 0.02
260 29/32 0/9 23/55 0.54 Yes 0.35, 0.57, 0.03

similar when they have similar instances. These rules have been used by some matching
systems [28, 29]. However, if ontologies only have some opaque literal information, namely
the δ is high, heuristic rules usually cannot work. The reason is that the similarity between
elements’ neighbors cannot be determined without enough clear literal information, so it
causes that the similarity between elements cannot be determined too.

A reasonable solution for this problem is similarity propagation, namely, the similarity
between elements can propagate to their neighbors in the graph, then similarity propagation
can produce more and more similarities. After each propagation, all similarities are normal-
ized. The propagation process is terminated until the similarities are converged. Based on
such similarity propagation idea, several similarity propagation models have been proposed
[18, 19, 30, 31, 17]. Among these models, similarity flooding [17] is the most classical one.
The similarity flooding includes three steps: (1) constructing pairwise connectivity graph;
(2) constructing induced propagation graph; (3) computing fixpoint values for matching.
Similarity flooding is a versatile matching algorithm and can be implemented easily, but it
is not sensitive to the initial similarity seeds. It means that different initial seeds would
produce similar matching results. Similarity flooding algorithm has been used for schema
matching in database and XML data [3]. However, similarity flooding is not a perfect al-
gorithm. Melnik and his colleagues summarized six disadvantages [17], for example, having
similar neighbors is the necessary precondition of this algorithm. After we try to use similar-
ity flooding to match ontologies directly, we also find the algorithm cannot work effectively
for matching WIOs. First, similarity flooding does not consider the similarities between
edges, which are properties in ontologies, so the property similarities between ontologies
cannot be calculated. Secondly, the maximum pairwise connectivity graph is NA∗NB (NA

and NB are the numbers of edges in two ontologies, respectively), and it will greatly increase
the time complexity for fixpoint computing and space complexity for storing the pairwise
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connectivity graphs. Moreover, in real-world matching tasks, the ontology graph may have
thousands edges, so the corresponding pairwise connectivity graphs would become too large
to be handled. For above reasons, the similarity flooding algorithm cannot be used directly
for matching WIOs. This paper aims to modify the similarity flooding and proposes a new
propagation model to solve the matching problem for WIOs.

3. Overview of the Methodology

Figure 2 depicts an overview of the proposed method for matching weak informative
ontologies, which involves three steps: (1) building the ontology graph from the WIO,
(2) extracting semantic subgraphs from the ontology graph, and (3) calculating similarity
propagation to obtain similarity matrix and the alignment.

We first use the hybrid ontology graph to represent the WIO for distinguishing multiple
properties between concepts, then explicitly describe the containers and collections in the
ontology graph, afterwards, enrich the ontology by discovering hidden semantics, further-
more, refine the ontology graph by removing annotation and definition triples. As a result,
according to the original source WIO and target WIO, we build two ontology graphs, which
can clearly describe the semantic information in ontologies.

For each concept (denoted by c in Figure 2 ) or property (denoted by p in Figure 2 ) in
the ontology graph, we extract the corresponding semantic subgraph, which can precisely
describe the meaning of the concept or property. This step is based on the commonsense
that people can understand a concept or property with limited semantic information, rather
than the whole ontology. Specially, in this paper, we apply a circuit model to efficiently
rank triples and then extract semantic subgraphs. More concretely, in the circuit model,
the conductivity simulates the capability of conveying information, the voltage indicates the
capability of preserving information, and the current denotes the semantic information flows
on edges in the ontology graph.

Based on semantic subgraphs, this paper proposes a novel similarity propagation model
for matching the weak informative ontologies. Considering the characteristics of ontolo-
gies, we design a strong constraint condition during similarity propagation, which not only

Source
WIO

WIO
Target

Ontology Graph Semantic Subgraphs

c
c
p
p

Similarity Propagation

Seeds

c pc p

c
c
p
p

Similarity Matrix
c

p

c

p

p p

c c

Alignment

Figure 2: Overview of matching weak informative ontologies
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avoids the performance drawbacks of similarity flood model but also can handle the corre-
spondences between properties in ontology matching. Additionally, the propagation model
employs the updating mechanism, credible seeds, penalty, termination condition, and propa-
gation scale strategies in order to ensure a balance between matching efficiency and quality.
In particular, the initial credible seeds in propagation are provided by a matcher based
on semantic subgraphs, i.e. the matcher calculates the similarities between the semantic
description documents, which are constructed from semantic subgraphs. Lastly, after the
similarity propagation, we obtain the similarity matrix and then extract the alignment from
it.

4. Ontology Graph

An ontology is composed of statements, which are triples like < s, p, o >. s, p and o stand
for the subject, predicate and object in a statement, respectively. There are three kinds of
ontology resources: URIs resources, literals and blank nodes. In a triple, the subject can be
URIs resources or blank nodes but not literals, and the predicate must be URIs resource. Let
sub(O), pred(O) and obj(O) represent the sets of ontology resources for subject, predicate
and object, respectively. An ontology can be directly converted into a raw ontology graph.

Definition 4 (Raw Ontology Graph). An ontology O can be represented by a labeled
directed graph Gr =< V,E, lV , lE >, where V and E refer to sets of vertices and edges,
respectively. V = {x|x ∈ sub(O) ∪ obj(O)}, E = {y|y ∈ pred(O)}, lV and lE are functions
which map vertices and edges to their labels. Two vertices and an edge strictly correspond
to a triple in an ontology. Gr is called the raw ontology graph.

Figure 3 (a) shows a simple raw ontology graph for describing conference knowledge.
The hollow arrows represent rdfs:subClassOf. The vertex a:17 denotes a blank node.

A raw ontology graph Gr is a multigraph, in which more than one edge can exist between
two vertices. A raw ontology graph and its adjacency matrix have two shortcomings. First,
a property can appear at a vertex and an edge at the same time, but the adjacency matrix
cannot represent this fact. Second, the adjacency matrix cannot distinguish multiple edges
between two vertices in the multigraph. To deal with the first shortcoming, we record all
statements about properties with extra space. The second shortcoming can be solved by the
bipartite graph, which converts each triple < s, p, o > into three triples: es =< Ti, S, s >,
ep =< Ti, P, p > and eo =< Ti, O, o >, where Ti assures the three triples can be reconverted
into the original triple. As shown in Figure 3(b), multiple edges in part of Figure 3(a) are
represented as the bipartite graph.

Although the bipartite graph can distinguish multiple edges between two vertices and
then all ontology resources can appear at vertices, it still has disadvantages: (1) A bipartite
graph size is three times larger than the original raw ontology graph. (2) The bipartite graph
cannot directly describe semantic relations between elements, and that makes it difficult to
analyze the ontology graph. To avoid these disadvantages, we present the hybrid ontology
graph, which combines advantages of the raw ontology graph and the bipartite graph. In
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Figure 3: Ontology graph processing

a hybrid ontology graph, if two vertices have only one edge, the triple can be represented
in the raw ontology graph, and if there are more than one edges between two vertices, we
convert some edges into a bipartite graph.

Definition 5 (Hybrid Ontology Graph). Given a raw ontology graphGr =< V,E, lV , lE >,
let Ep(vm, vn) = {< vm, pi, vn >∈ E} be all edges from vm to vn. |Ep(vm, vn)| is the number
of edges between vm and vn. The hybrid ontology graph for Gr is Gh =< V ′, E ′, lV , lE >,
which can be constructed according to following rules:

(1) If |Ep(vm, vn)| = 1, the edges and vertices are directly converted into Gh.

(2) If |Ep(vm, vn)| > 1, then randomly convert |Ep(vm, vn)| − 1 edges into a bipartite graph
and add them into Gh.

A hybrid ontology graph can be implemented by an adjacency matrix. Edges using the
bipartite graph style can be reconverted into the original triples. The corresponding hybrid
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ontology graph of Figure 3(a) is shown in Figure 3(c), in which an edge is represented by
bipartite graph.

There is some semantic information hidden in the ontology which would be useful for
understanding the ontology, meanwhile, some triples are not useful for describing the se-
mantics of elements. Therefore, a hybrid ontology graph needs to be further processed, that
includes processing containers and collections, enriching and refining the ontology graph.

Phase 1: Processing containers and collections
In RDF language6, containers and collections are used to describe sets of resources.

Containers are represented in rdf:Bag, rdf:Seq and rdf:Alt. Collections are represented in
rdf:List. Although container and collection simplify the ontology, but their semantics cannot
be clearly represented in ontology graphs. Hence, we use semantically equivalent statements
to replace containers and collections. For example, in a triple < Beatles, artist, a11 >,
a11 is a rdf:Bag blank node and has four members: John, Paul, George, Ringo, then
we use four triples to replace the original description as: < Beatles, artist, John >, <
Beatles, artist, Paul >, < Beatles, artist, George >, < Beatles, artist, Ringo >.

Phase 2: Enriching the ontology graph
The enriching process discovers more hidden semantics and represents them clearly. In

fact, although discovering hidden semantics can be seen as ontology reasoning, we use en-
riching rules instead of existing reasoners because the rules have more flexible operations on
ontologies and are independent of ontology languages.

Step 1. Enriching domain and range: In the property hierarchy, the domain and range of
a super property can be inherited by its sub properties. Such semantics are clearly
declared in ontology graphs.

Step 2. Enriching concept axioms: Concept axioms include owl:oneOf, owl:intersectionOf,
owl:unionOf, owl:equivalentClass, etc. For example, if an owl:intersectionOf axiom
defines a complex concept A⊓B which has a sub concept C, then A ⊐ C and B ⊐ C
are added into the ontology graph.

Step 3. Enriching property axioms: Property axioms include owl:SymmetricProperty,
owl:TransitiveProperty, owl:equivalentProperty, etc. For example, an axiom
owl:SymmerticProperty declares predicate p is symmetric, and there is a triple
< s, p, o > (s is subject and o is object), then a new triple < o, p, s > is added
into the ontology graph.

Step 4. Enriching owl:sameAs axioms: If some resources are declared by owl:sameAs, they
share same semantic information.

Step 5. Enriching properties in the concept hierarchy: The property of a super concept can
be inherited by its sub concepts. For example, given < p, rdfs:domain, A > and
< B, rdfs:subClassOf, A >, then < p, rdfs:domain, B > holds.

Phase 3: Refining the ontology graph
In an ontology graph, annotation and definition triples are removed, that make relations

between elements clearer.

6https://www.w3.org/RDF/
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Table 2: Changes of ontology graph size in ontology graph processing

Gr phase1 phase2 phase3 Gh

benchmark 3772 3734 6086 4409 4453
conference 2133 2133 2774 2436 2436
directory 18970 18970 18970 9483 9483
anatomy 51268 51268 51268 28367 28367
food 337037 337037 337037 93312 93312
library 161806 161806 161806 20156 20156

Step 1. Removing annotations: Remove triples including rdfs:label, rdfs:comment, rdfs:seeAlso,
rdfs:isDefineBy and owl:AnnotationProperty.

Step 2. Removing the ontology head information: The ontology head information, which
is between two <owl:Ontology> tags, only describes the information about the
ontology. So it can be removed.

Step 3. Removing the version information: We remove the version information such as owl:
versionInfo, owl: backwardCompatibleWith, owl:incompatibleWith, owl:priorVersion,
owl:DeprecatedClass and owl: DeprecatedProperty.

Step 4. Removing rdf:type statements pointing to the metadata: For example, <Game,
rdf:type, owl:Class> should be removed, but < StarWars, rdf:type, Game > should
be kept.

Step 5. Removing owl:Thing and owl:Nothing : They are the global concept ⊤ and the
empty concept ⊥, which do not describe the semantic relations between elements.

In Figure 3(c), red edges are added after ontology graph processing.
Table 2 shows changes of graph size in ontology graph processing. Here, we use six

datasets in OAEI2007 7: (1) 101, 301, 302, 303 and 304 in the benchmark task, (2) Cmt and
Edas in the conference task, (3) source and target in the directory task, (4) mouse and nci
in the anatomy task, (5) AGOVOC, NALT and GEMET in the food task and (6) Brinkman
and GTT in the library task. Column 2 to 5 show changes of ontology graph size during
different processing phases. When an ontology has containers and collections, phase 1 adds
new triples and deletes old triples for the containers or collections, so the graph size change
is uncertain. The enriching phase usually increases the graph size. Many hidden semantic
information was discovered in the benchmark. The refining phase reduces the ontology graph
size, especially in the last 4 datasets that have a lot of annotation information.

5. Semantic Subgraph

The semantic subgraph, which is the foundation of our solution for matching weak infor-
mative ontologies, is used for precisely describing the meaning for each ontology element. An

7http://oaei.ontologymatching.org/2007/
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ontology is composed of elements including concepts, properties, and instances. Understand-
ing ontology elements is one of the most frequent operations in ontology applications such
as semantic searching and ontology matching. A single element is meaningless without the
semantic context, which contains relative statements or triples in an ontology. The meaning
of an element in an ontology can be described by relative statements or triples. However,
there is no way to determine which statement should be selected and whether the selected
statements are enough. For the former question, people often intuitively think statements
that directly contain the element are what we need, but it is not always correct. For ex-
ample, given an element MichaelJordan, if we know < MichaelJordan, playIn,Bulls >, the
direct statement < MichaelJordan, drive, car > conveys less information about MichaelJor-
dan than the indirect statement < Bulls, isA,NBATeam >. In order to answer the latter
question, we must find a way to measure whether we have gathered enough semantic con-
texts. The semantic context of an ontology element is composed of some relevant statements
(or triples), which is a subgraph in the ontology graph. Such subgraphs are called semantic
subgraphs of ontology elements.

Definition 6 (Semantic Subgraph). Given an element e in a hybrid ontology graph Gh,
its semantic subgraph Gs(e) is composed of top-k (top-k ∈ N) related triples that describe
e. Gs(e) ⊆ Gh and Gs(e) has following features:

1. The size of Gs(e) is limited. We believe that only top-k related triples can accurately
describe the context of an element, namely, the semantic interpretation of an element
does not need all knowledge in the ontology.

2. Gs(e) does not emphasize semantic completeness. A semantic subgraph collect as
much information about the element as possible until it can distinguish an element
from other elements.

3. Gs(e) is unique. Two elements with different semantics have different semantic sub-
graphs.

4. Gs(e) prefers triples related to e. Different triples have different capabilities for de-
scribing an element. Ranking all triple about e according to related scores from high
to low, Gs(e) fist selects higher triples.

5. Closer triples do not mean more related to e. It is possible that triples far from the
element may be more important than closer ones.

These five features assure that a semantic subgraph provides a clear, accurate and cred-
ible semantic description for an ontology element. Concept and property are the two im-
portant basic types of elements in an ontology. We will discuss the method for extracting
semantic subgraphs for given concepts or properties from ontology graphs.

6. Extracting Semantic Subgraphs based on Circuit Model

According to the principle of semantic subgraphs, in order to extract the semantic sub-
graph for a given element, we first rank all related triples in ontology graphs, then select
top-k triples to compose the semantic subgraph. This paper proposes a circuit model to
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efficiently rank triples and extract semantic subgraphs. In this section, we first introduce
the circuit model, then calculate conductivity, finally discuss the extraction algorithm.

6.1. Circuit model

In order to extract semantic subgraphs, this paper utilizes circuit to model the semantic
information propagation in an ontology. First, assuming that semantic information about s
in an ontology graph is a measurable value in [0, 1], and it comes from vertex s with initial
semantic information value 1, then flows to other vertices si through some triples. Since
these triples have resistance to semantic information flow, the semantic information reaching
si will have some losses. Such information about s will flow in the ontology graph continually.
The semantic subgraph of s is composed of paths which start from s and have more semantic
information about s. This process corresponds to an electrical circuit model. The semantic
information from s corresponds to adding +1 volt on s. The semantic information on a
path from s to si corresponds to the current reaching si through this path. The resistance
in information flow corresponds to the electric resistance.

Similar circuit model has been used by Faloutsos et al [32] for discovering connection
subgraphs in social networks. Based on this previous work, this paper proposes a modified
model based on characteristics of ontologies for extracting semantic subgraphs.

In the circuit model, the capability of conveying information is the conductivity C,
the capability of keeping information is the voltage V , and current I denotes the total
information flows on edge per unit time.

A connection subgraph connects the source vertex s and the target vertex t [32]. However,
a semantic subgraph only has the source vertex s (the given element). Therefore, the first
modification is adding a sink node z as the target vertex into the ontology graph, in which
each vertex has an edge to z.

Given two vertices u and v, let I(u, v) denote the current from u to v, V (u) and V (v)
be the voltages on u and v, and C(u, v) and R(u, v) be the conductivity and resistance on
the edge between u and v, C(u, v) = 1/R(u, v). Then an ontology graph is converted into a
circuit, which has the following initial conditions:

V (s) = 1, V (z) = 0 (1)

All voltages and currents in the circuit can be computed according to Ohm’s law and
Kirchhoff’s law.

The conductivity from any vertex to sink node z is:

C(u, z) = λ
∑
w ̸=s

C(u,w) (2)

Here, λ denotes the current loss coefficient, and 1 ≥ λ > 0.

Definition 7 (Delivered Current). The delivered current Î(P ) in a prefix-path P =
(s = u1, . . . , ui) is the volume of electrons that arrives at ui through P .
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The delivered current can be calculated by:

Î(s = u1, ..., ui) = Î(s = u1, ..., ui−1)
I(ui−1, ui)

Iout(ui−1)
(3)

Iout(u) is the total current come from u.
In physics, the delivered current describes the remaining current through a path from

s. Here it denotes the amount of semantic information about s in a path. In other words,
the delivered current measures the relevance between a path and s, that further means that
triples in the path are relevant to s. Therefore, a subgraph about s can be regarded as
the combination of some prefix-paths. The captured flow of a subgraph can be defined as
follows.

Definition 8 (Captured Flow). The captured flow of subgraph Gs is the sum of all the
delivered current in the prefix-path in Gs:

CF (Gs) =
∑

P=(s,...,t)∈Gs

Î(P ) (4)

Therefore, for all subgraphs having k triples, the subgraph with the maximum capture
flow is the semantic subgraph. In other words, a semantic subgraph is determined by the
captured flow on paths, which contain relevant triples about s. A subgraph with more
captured flow has more information about s. In the above process, we do not rank the triples
directly, but use the maximum captured flow to indirectly realize the ranking. Namely, a
new triple is added in a semantic subgraph is always the one that can increase maximum
captured flow.

Extracting semantic subgraph can be divided into two sub problems: (1) Traversing all
prefix-paths from s to z and calculating their delivered currents. (2) Searching all k-size
subgraphs combined by prefix-paths and calculating their capture flows. The subgraph
with the maximum captured flow is the semantic subgraph. Howerver, the two
sub problems are NP problems. Faloutsos et al. proposed a greedy algorithm called Dis-
playGeneration [32] to efficiently discover connection subgraphs. The greedy idea prefers
prefix-paths bringing the maximum fraction between delivery current and new nodes. Our
algorithm of extracting semantic subgraphs is also based on this greedy algorithm.

The time complexity of solving the circuit model is O(|V |3+ |E|×m×k). The first part
is the complexity of solving the circuit linear equation, and the later part is the complexity
of extracting the semantic subgraphs by the greedy algorithm. |V | is the number of vertex
in ontology graph, |E| is the number of edges, m is the maximum length of the paths from
s to z and m < |V |. k is the size of the semantic subgraph. Usually, k is a constant
and is far smaller than |V |. Most ontology graphs are sparse , in which |E| and |V | are
linear relationship. Thus the later part is O(|V |2) approximately. Then the performance is
dominated by the time for solving the circuit linear equation. Therefore, the approximate
time complexity is O(|V |3)

The space complexity of the circuit model is O(|V |2 + |V |m), where the former part
is the space for solving the linear equation, and the later part is the space for the greedy
algorithm. The total space complexity can also be simplified to O(|V |2).
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6.2. Conductivity calculation

If the conductivity between vertices was 1, which means that the whole information
is delivered. However, in an ontology graph, the semantic information would have losses
when it flows through triples, so the edge conductivity should be a value in [0,1]. Based on
some ontology characteristics, we first derive some heuristic rules to measure capability of
delivering information, then calculate the conductivity.

Rule 1: Frequency rule
Here we first introduce an attenuation function:

g(x,m) =
1

2
(
1

x
+ (1− log x

log(m+ ε)
)),m ≥ x ≥ 1 (5)

where x and m are variables, and ε is a small positive constant to assure log(m + ε) > 0.
Comparing with f(x) = 1/x, g(x,m) can slowly decrease when x increases.

Let f(e) be the number of triples in an ontology graph Gh in which e appears. The
weight of e is:

µf (e) = g(f(e),maxei∈Gh
f(ei)) (6)

The frequency rule applies to concept, property and metadata, and it means more fre-
quently used elements deliver less information.

Rule 2: Hierarchy rule
Hierarchy is the important way to organize concepts and properties. The higher level

elements have less capability of delivering information. It can be measured by following
weight.

µH(e) =
dh(e)

maxei∈Gh
dh(ei)

(7)

dh(e) denotes the depth of the element in the hierarchy. The hierarchy rule applies for
concept and property.

Rule 3: Instance space rule
An instance space in an interpretation function on an ontology O. Given a concept C,

its instance space is the set Isp(C) = {a| < a, rdf:type, C >∈ O}. Given a property P , its
instance space is Isp(P ) = {< a, b > | < a, P, b >∈ O, a ∈ Dom(P ), b ∈ Rng(P )}, where
Dom(P ) and Rng(P ) are the domain and range of P , respectively.

A larger instance space indicates that a concept has more instances, then the concept has
a higher possibility of being on the top level, which means that it will deliver less information.
Similarly, if a property instance space is larger, then the property is used more frequently,
so it conveys less information. Such a weight can be calculated as:

µIsp(e) = g(|Isp(e)|,maxei∈Gh
|Isp(ei)|) (8)

where |Isp(e)| is the size of the instance space of e.
Rule 4: Instance property description rule This rule is based on the assumption

that more key instances would have more relative triples. This assumption is based on our
experience that key instances in an ontology are described in more details than satellite
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instances. Therefore, this assumption usually holds. Given an instance a and its relative
triples like < a, pm, b >, the number of pm can be used to measure the importance of the
instance. The formula to calculate the weight is:

µId(a) =
dp(a) + op(a)

maxai∈Gh
dp(ai) +maxai∈Gh

op(ai)
(9)

where dp(a) denotes the number of DatatypeProperty and op(a) denotes the number of
ObjectProperty.

Rule 5: Few instance rule
Let a be an instance of concept C. Concepts having few instances will have more infor-

mation. The weight can be calculated as:

µIo(a) = g(|C(a)|,maxai∈Gh
|C(ai)|) (10)

where |C(a)| is the number of instances of C.
Based on the above five rules, the weights for concept C, property P , instance I and

metadata M are as follows:

µ(C) = γC1 × µf (C) + γC2 × µH(C) + γC3 × µIsp(C) (11)

µ(P ) = γP1 × µf (P ) + γP2 × µH(P ) + γP3 × µIsp(P ) (12)

µ(I) = γI1 × µId(I) + γI2 × µIo(I) (13)

µ(M) = µf (M) (14)

where γC1 + γC2 + γC3 = 1, γP1 + γP2 + γP3 = 1, and γI1 + γI2 = 1.
Finally, the conductivity for any triple t =< s, p, o > can be obtained based on the

weights of s, p and o. Since s and o are relevant to other triples, their weights should be
divided by the degrees.

w(t) =

µ(s)
deg ree(s)

+ µ(p) + µ(o)
deg ree(o)

3
(15)

Although five rules are intuitive and empirical, they essentially conform to entropy in
information theory, namely, lower possibility events deliver more information.

6.3. Semantic subgraph extraction algorithm

After calculating the conductivity, the circuit model can be used to extract semantic
subgraphs for concepts and properties. Algorithm 1 describes the extraction process. A
concept always locates at a vertex in an ontology graph. First, for any concept ei, 1 volt is
added to the vertex (line 5). Then, the circuit equation is solved (line 6). Third, according to
greedy algorithm DisplayGeneration [32], the k-size subgraph with the maximum captured
flow is the semantic subgraph (line 7). Finally, semantic subgraph Gs(ei) is obtained. Note
that, since a property can appear on a vertex and an edge at the same time, the extraction
for a property has little different to a concept. For a property Pi, if 1 volt was only added
to Pi, the triple < cj, Pi, oj > would have less current, but it is useful for describing the

16



Algorithm 1: Extracting semantic subgraphs

Input: ontology graph G
Output: S:semantic subgraphs for elements

1 begin
2 S ← ∅

// calculate weights

3 Gw ← GetGraphTripleWeight(G)
// traverse all elements

4 foreach ei ∈ G do
// add 1 volt

5 SetV olt(ei)← 1
// solve circuit equation

6 SolveLinearSystem(Gw, ei)
// extract a semantic subgraph

7 Gs(ei)← Extract(Gw, ei, N)
8 S ← S ∪Gs(ei)

9 end

10 end

semantic of Pi. Therefore, an edge from Pi to cj is added to overcome this problem, that
will increase the current on edge < cj, Pi, oj >.

Figure 4 shows the process of extracting the semantic subgraph for concept Paper in
Figure 3. In Figure 4(a), sink node z is added and all conductivities are calculated. In
Figure 4(b), +1 voltage is added on Paper and z has 0 voltage, then all voltages and
currents are computed. Red values are voltages and green values are currents. Figure 4(c)
shows some paths from Paper to z and their delivered currents. All paths are ranked by
the delivered currents. In order to extract a 5-size semantic subgraph for Paper, we can
add these paths one by one according to their delivered currents from high to low, until the
semantic subgraph has 5 triples. Such subgraph is the semantic subgraph of Paper. The 5
triples in this semantic subgraph are more relevant to Paper than the ones in paths with
lower delivered currents. The captured flow of this semantic subgraph is maximum in all
subgraphs with 5 triples.

7. Similarity Propagation Model Based on Semantic Subgraphs

Based on semantic subgraphs, we propose a novel similarity propagation model for match-
ing weak informative ontologies. We first discuss the similarity propagation condition, then
present the detail of the propagation model including the updating, seeds, penalty, and
termination condition.
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7.1. Similarity propagation condition

Ontology graph consists of triples like <si, pi, oi>. In ontology matching, a reasonable
similarity propagation should consider both vertices (si and oi) and edges (pi). Similarity
flooding model [17] presumes that each edge pair (px, py) has 1.0 similarity value, and the
similarity of vertex pair (sx, sy) will be propagated to another vertex pair (ox, oy). This
propagation condition has three disadvantages: (1) It would produce a large number of
alignment candidates and generate a large scale pairwise connectivity graph; (2) It would
produce many incorrect alignment candidates. (3) It cannot deal with the correspondences
between properties in ontology matching.

In order to avoid these disadvantages, this paper proposes a new propagation condition
for ontology matching, namely, the strong constraint condition (SC-condition).

Definition 9 (Strong Constraint Condition). Given two triples ti =<si, pi, oi> and
tj=<sj, pj, oj>, and let Ss, Sp and So denote the corresponding similarities of (si, sj), (pi, pj)
and (oi, oj), respectively. Similarities can be propagated only ti and tj satisfy following three
conditions:
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(1) In Ss, Sp and So, at least two similarities must be larger than threshold θ;

(2) If ti includes ontology language primitives, the corresponding positions of tj must be
same primitives;

(3) ti or tj has at most one ontology language primitive.

Condition (1) ensures that the final similarity results are creditable after propagat-
ing. The ontology language primitives refer to RDF vocabularies and OWL vocabular-
ies8. Condition (2) ensures that two triples use same ontology language primitive to de-
scribe semantics. For example, <Conference Paper, rdfs : subClassOf, Paper > and <
Paper, rdfs:subClassOf,Document> use the RDF primitive rdfs:subClassOf as predi-
cate, so the similarities can be propagated between them. Condition (3) ensures that there
is no ontology definition and declaration triples during propagating, because such triples
may cause incorrect matching results. For example, without condition (3), two triples
<PhDStu, rdf : type, rdfs :Class> and <Paper, rdf : type, rdfs :Class> will cause wrong
alignment: PhDStu=Paper.

After one propagation, the similarity of an element pair will be increased by the sum
of other two pairs. Taking the similarity Ss as an example after ith propagation, its new
similarity is:

Si
s = Si−1

s + wpo × Si−1
p × Si−1

o (16)

Analogously, the Si
p and Si

o are:

Si
p = Si−1

p + wso × Si−1
s × Si−1

o (17)

Si
o = Si−1

o + wsp × Si−1
s × Si−1

p (18)

wpo, wso and wsp are propagation factors, which will be discussed latter. In addition, all
similarities will be normalized after each propagation.

7.2. Similarity propagation model

Our new similarity propagation model contains three steps. Given two ontology graphs
and initial similarity seeds, we first construct pairwise connectivity graph, then get induced
propagation graph, and finally obtain the new similarities by fixpoint value calculation.
Figure 5 illustrates the similarity propagation model with three steps as follows.

Step1: Constructing pairwise connectivity graph
Traditional similarity flooding model is not sensitive to initial similarity seeds, so all ini-

tial similarity values can be set to 1.0. However, in ontology matching, similarity propagation
cannot use the same setting, because it will not only cause very large pairwise connectivity
graph but also generate many wrong correspondences. In our view, the quality of the initial
similarity seeds is very important for matching ontologies, namely, credible correspondences
would generate more credible correspondences during similarity propagation. Wrong corre-
spondences are noise in similarity propagation. Therefore, this paper tries to use few high

8https://www.w3.org/TR/owl-guide/
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Figure 5: Similarity propagation model with SC-condition

quality correspondences as initial similarity seeds, which can be calculated by string-based
matching methods or provided manually.

According to initial similarity seeds and the SC-condition, the pairwise connectivity
graph can be constructed as shown in Figure 5. The pairwise connectivity graph is influenced
by similarity seeds. Different seeds will cause different pairwise connectivity graphs.

Step2: Constructing induced propagation graph
According to formula (16)-(18), similarities from two element pairs are propagated to the

third pair. The propagation factor measures how much similarity value can be propagated.
There are three kinds of propagation factor: wsp, wso and wpo.

Take wsp as an example, it denotes how much similarity value that comes from Ss and Sp

can be propagated to So. Let fsp denote the number of the triple pairs having (si, sj)
(pi,pj)−−−→

(ox, oy) style in pairwise connectivity graph, then wsp = 1/fsp. wso and wpo can be calculated
analogously.

The induced propagation graph can be represented by a bipartite graph as shown in
Figure 5, where S1, S2, S3 and S4 in induced propagation graph denote the four triples in
pairwise connectivity graph. Therefore, the similarities of properties in ontologies can also
be propagated. The weights of edges denote the propagation factors. In the implementation,
for the reason that propagation factors can be directly obtained according to the pairwise
connectivity graph, we record the propagation factors but need not to store the induced
propagation graph.

Step3: Computing fixpoint values
The similarity propagation between ontology graphs can be computed iteratively until

the final similarity matrix is converged. Under the SC-condition, the fixpoint values can be
computed by formula (19), where normalization is omitted for clarity.

Actually, formula (19) is the synthesized style for formula (16)-(18). For each element
pair (x, y), which would be subject pair, predicate pair or object pair, its new similarity in
the (i+ 1)th propagation contains four parts:

(1) The similarity in ith propagation;
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(2) The propagation similarity when (x, y) is object pair;

(3) The propagation similarity when (x, y) is subject pair;

(4) The propagation similarity when (x, y) is predicate pair.

si+1(x, y) = si(x, y)

+
∑

<au,pu,x>∈A
<bu,qu,y>∈B

si(au, bu) · si(pu, qu) · wsp

+
∑

<x,pv ,av>∈A
<y,qv ,bv>∈B

si(av, bv) · si(pv, qv) · wpo

+
∑

<at,x,ct>∈A
<bt,y,dt>∈B

si(at, bt) · si(ct, dt) · wso

(19)

7.3. Incremental updating for pairwise connectivity graph

The SC-condition greatly reduces the scale of pairwise connectivity graph. After one
similarity propagation, the similarity matrix will change, and new similarity values between
elements are obtained. In Figure 5, the red pairs are new similarities after one propagation.
Therefore, for the next propagation, we need to construct a new pairwise connectivity graph.
However, constructing a pairwise connectivity graph is a time-consuming process, because
we need to check all similarity values and select right triples from the ontology graph.

To reduce the constructing cost, we adopt an incremental updating way. After one sim-
ilarity propagation, the new pairwise connectivity graph dose not need to be reconstructed
entirely, but can be extended based on the previous one. We only update the parts in the
pairwise connectivity graph whose similarities have been changed. If an element pair has
been in the pairwise connectivity graph and its similarity is smaller than θ, we remove that
element pair from the pairwise connectivity graph. If a new element pair has been discovered
and its similarity is bigger than θ, we add that element pair into the pairwise connectiv-
ity graph. If two new triples satisfy the SC-condition, we add them to the new pairwise
connectivity graph. Otherwise, we remove the triples that do not satisfy the SC-condition.

Figure 6 illustrates the incremental updating for pairwise connectivity graphs. The
second pairwise connectivity graph is constructed based on the first one in Figure 5. The
third connectivity graph is also constructed based on the second one. The red vertices and
edges are new parts in pairwise connectivity graphs. New element pairs are also shown in
red in the fixpoint values list.

7.4. Credible seeds

For initial similarity seeds, we regard correspondences having high similarity value as
credible seeds. We will keep these credible correspondences during the similarity propaga-
tion. This strategy has two advantages. First, it assures that some correct correspondences
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Figure 6: Updating pairwise connectivity graph

cannot be changed or be affected by other triples during similarity propagation. Second, it
can avoid some unnecessary similarity propagation calculation.

If S(ai, bj) is a credible seed, then all similarity propagation calculations like S(ai, bx)
and S(ay, bj) can be skipped. Hence, credible seeds can not only reduce the propagation
cost, but also decrease the negative effect in propagation.

7.5. Penalty in propagation

For an ideal similarity matrix, correct correspondences should have higher confidence
values and incorrect correspondences should have lower confidence values. However, the
real-world similarity matrix is far from perfect. Therefore, it is necessary to penalize the
correspondences to improve propagation results . The penalty will make little influence for
correspondences having high confidence value but reduce the potential wrong correspon-
dences having lower confidence value.

We provide two penalty factors pa and pb as follows.

pa =
s(ai, bj)

max(smax(ai, bx), smax(ay, bj))
(20)

smax(ai, bx) is the maximum value in i-th row, smax(ay, bj) is the maximum value in j-th
column. Therefore, pa measures the ratio of similarity value s(ai, bj) to the maximum value
in its row and column.

pb =
1

1 + e−αt
, t = (

N + 1

ni + 1
/log(N + 1)), α ≥ 1 (21)

N is the number of columns and rows in similarity matrix. ni is the number of correspon-
dences whose confidence values are larger than 0 in i-th column and j-th row. We set α = 3
in the implementation.
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After being penalized, the new similarity value is:

S
′
(ai, bj) = S(ai, bj) · pa · pb (22)

pa penalizes the correspondences having low similarity values, and pb penalizes correspon-
dences whose column and row have too many correspondences with S(x, y)>0.

7.6. Termination condition

Our similarity propagation model should satisfy three termination conditions: (1) The
matrix norm between two sequential similarity matrices is not bigger than a given threshold.
Propagation should assure that the final similarity matrix is convergent. Fortunately, Melnik
and his colleagues have proved that fixpoint computing can be convergent if the pairwise
connectivity graph is a strongly connected graph [17]. (2) There is no update for the pairwise
connectivity graph. (3) In a similarity propagation, to avoid the matrix needs too many
times propagation to be convergent, we set the maximum propagation times as 8 in the
implementation.

8. Propagation Scale Choosing Strategies

To improve the efficiency of similarity propagation and the quality of matching results,
we design five propagation scale strategies to study what kind of graphs should be used
in the similarity propagation. These strategies are about choosing the right parts in the
ontology graph for similarity propagation.
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Figure 7: Five propagation scale strategies

An element e has a semantic subgraph Gs(e). All semantic subgraphs of concepts are
combined to a graph GCC . All semantic subgraphs of properties are combined to a graph
GCP . GCC and GCP may be overlapping. Let GC be the graph combined by all semantic
subgraphs of concepts and properties. Then GC = GCC ∪ GCP . Meanwhile, GC is part
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of hybrid ontology graph Gh. The left of Figure 7 illustrates the intersection relationships
of these graphs. According to these graphs, we design five propagation scale strategies as
shown in the right of Figure 7.

Strategy 1: Full ontology graph propagation
In similarity propagation, a simple and direct way is using full ontology graph as the

propagation scale. For two ontologies OA and OB, the similarity propagation is between
two hybrid ontology graph GA

h and GB
h . Although there is no ontology information to be

missed in this strategy, it also has two drawbacks: (1) During similarity propagation, the
pairwise connectivity graph may become too large, then it will influence the efficiency of
propagation and be difficult to be handled. Especially for the large scale ontology graph,
it is possible to generate very large pairwise connectivity graph. (2) More triples do not
mean better propagation results. In full ontology graph, some triples are not important for
describing semantics. In addition, too many triples may increase more uncertainty or noise
in propagation and bring negative affection for matching results.

Strategy 2: Independent semantic subgraph propagation
A semantic subgraph is used to precisely describe an element. Therefore, if we constrain

the propagation scale in semantic subgraphs, the propagation can avoid triples that is irrel-
evant to the element. Given two elements ei and ej and corresponding semantic subgraphs
GA

Si and GB
Sj, the similarity S(a, b) is obtained by the similarity propagating between GA

Si

and GB
Sj. If two ontologies have n and m elements respectively, this strategy needs n×m

times similarity propagations. For the reason that each semantic subgraph is small, the
similarity propagation can be calculated quickly.

Strategy 3. One combined semantic subgraph propagation
We notice that different semantic subgraphs may be overlapping. In strategy 2, some

triples would be used in multiple similarity propagations. Therefore, we can combine all
semantic subgraphs as the propagation scale. According to features of semantic subgraphs,
the combined graph only contains triples relevant to elements. It not only improves the
propagation efficiency, but also removes the irrelevant information to avoid introducing
propagation noise. Let GA

C and GB
C be the combined semantic subgraphs of OA and OB,

respectively, the similarity propagation is between GA
C and GB

C .
Strategy 4: Two separate combined semantic subgraphs propagation
Strategy 3 can be redivided into a more concrete strategy. Since a GC is combined

by a GCC and a GCP , the similarity propagation between concepts can be constrained in
GCC , and the similarity propagation between properties can also be constrained in GCP .
Therefore, for ontology OA and OB, the similarities between concepts are calculated by the
similarity propagation between GA

CC and GB
CC , and the similarities between properties can

be calculated by the similarity propagation between GA
CP and GB

CP . From the ontology
matching perspective, such propagation strategy will produce two similarity matrices: one
is similarity matrix for concepts, another is similarity matrix for properties.

Strategy 5: Hybrid semantic subgraph propagation
In strategy 2, the similarity propagation is between two small semantic subgraphs. In

strategy 3, the similarity propagation is between two graphs combined by semantic sub-
graphs. To balance the above two strategies, we propose a hybrid propagation scale strategy.
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In this strategy, one graph is a semantic subgraph of an element ei, and the another graph
is the combined graph GC . It means that the similarity propagation is between GA

Si and
GB

C or between GA
C and GB

Sj. Therefore, after one similarity propagation, we can obtain the
similarities about ei to all elements in another ontology. This strategy only needs n times
propagations.

For hybrid semantic subgraph propagation scale strategy, given an element ai, we can
get a set of similarities {S(ai, bx)}(x = 1, ..., n) in the similarity propagation. Given another
element bj in the opponent ontology, we can also get another similarity set {S(ay, bj)}(y =
1, ...,m). Therefore, we have two similarity matrices, in which the similarity value at S(ai, bj)
may be different. This paper calculates the average of two similarity matrices as the final
propagation result. The two similarity matrices have the function of cross validation, so it
can improve the quality of propagation result.

9. Matcher based on Semantic Subgraphs

Moreover, we propose a matcher based on semantic subgraphs for inputting credible ali-
ment seeds to similarity propagation. This matcher first constructs the semantic description
document for each element. Then it calculates the similarities between elements based on
the semantic description documents.

9.1. Semantic description document

For an element, this paper organizes relevant literal information based on semantic sub-
graphs as virtual document [33]. We call this virtual document the semantic description
document (SDD). To avoid introducing irrelevant literal information, SDD is constrained
in semantic subgraphs. In addition, SDD does not consider ontology language primitive,
such as rdfs:Class and owl:hasValue. In SDD construction, the text preprocessing contains
stemming and removing frequent vocabularies.

For each concept, property or instance, it has a basic SDD, which consists of local name,
label and annotation. The basic SDD of element e is:

Dbase(e) = φ1 ∗Wlocalname + φ2 ∗Wlabel + φ3 ∗Wcomment + φ4 ∗WotherAnnotation (23)

where Wlocalname is local name, Wlabel is rdfs:label text, Wcomment is the rdfs:comment text,
and WotherAnnotation is other annotation text. Weight φi is in [0,1]. Hence, SDD is the set of
words with weights. + denotes the union operation between sets.

Since an ontology graph is enriched, elements with owl:equivalentClass or owl:sameAs
axioms will have same SDD.

Generally, we consider the SDD in two sides: (1) SDD can re-organize literal information
according to the semantic description of elements; (2) To avoid containing irrelevant and
unimportant literal information, SDD is constrained in semantic subgraphs.

The SDD of concept C is organized by concept hierarchy, axioms, related properties
and instances. Three virtual documents are constructed to describe the semantic context
for sup-concepts, sub-concepts and sibling concepts. sup(C), sub(C) and sib(C) are sets
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of super-concepts, sub-concepts and sibling concepts of C, respectively. dist(C,Ci) is the
distance between C and Ci.

Dsup(C) =
∑

Ci∈sup(C)

1

dist(C,Ci)
Dbase(Ci) (24)

Dsub(C) =
∑

Ci∈sub(C)

1

dist(Ci)
Dbase(Ci) (25)

Dsib(C) =
∑

Ci∈sib(C)

Dbase(Ci) (26)

Virtual documents of related properties of concept C are follows.

Ddom(C) =
∑

Pi∈Dom∗(C)

Dbase(Pi) (27)

Drng(C) =
∑

Pi∈Rng∗(C)

Dbase(Pi) (28)

where Dom∗(C) and Rng∗(C) are properties whose domain and range are C.
A virtual document is used to describe direct instances of C:

Dins(C) =
∑
ci∈C

Dbase(ci) (29)

The SDD of property P is organized by domain and range statements, and it contains
two parts:

Ddom(P ) =
∑

Ci∈Dom(P )

Dbase(Ci) (30)

Drng(P ) =
∑

ei∈Rng(P )

Dbase(ei) (31)

An ontology often has blank nodes, which are contained by SDD of concepts and prop-
erties. The SDD of a blank node b is as follows.

Dblank(b) = α1 ∗
∑
ti∈C1

Dbase(pre(ti)) +Dbase(obj(ti))

+α2 ∗
∑
tl∈C2

Dbase(sub(tl)) +Dbase(pre(tl))

+α3 ∗
∑

tm∈C3

Dbase(pre(tm)) +Dblank(obj(tm))

+α4 ∗
∑
tn∈C4

Dblank(sub(tn)) +Dbase(pre(tn)) (32)
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Let B be the set of blank nodes in ontology O. Given a triple t =< s, p, o >, sub(t), pre(t)
and obj(t) are subject, predicate and object. C1, C2, C3 and C4 are sets of triples:

C1 = {t ∈ O|sub(t) = b and obj(t) /∈ B}
C2 = {t ∈ O|sub(t) /∈ B and obj(t) = b}
C3 = {t ∈ O|sub(t) = b and obj(t) ∈ B}
C4 = {t ∈ O|sub(t) ∈ B and obj(t) = b}

αi is a weight. Let dist(t, b) be the distance between t and b, then αi = 1/dist(t, b). Dblank(b)
can be computed recursively. If there is a circle during recursive computing, the computing
is terminated directly.

9.2. Similarity computation

After constructing SDD for concepts and properties, correspondences can be discovered
by computing similarities between SDD. A SDD is a set of vocabularies with weights, namely,
SDD = {p1 ∗W1, p2 ∗W2, ..., px ∗Wx}. We can use cosine to measure the similarities.

Let Doc = {SDD1, SDD2, . . . , SDDN}, and each SDD contains n items t1, t2, . . . , tn.

Thus each document SDDi can be described as an n-dimension vector D⃗i = (di1, di2, ..., din),
where dij is the weight of j-th item. If the edit-distance similarity of two items is larger
than a predefined threshold 0.85, they are treated as same item. The weight dij in vector

D⃗i is TF-IDF weight.
The similarity between two virtual documents is the cosine value of vectors. Therefore,

the similarity between D⃗i and D⃗j is:

Sim(D⃗i, D⃗j) =

n∑
k=1

dik × djk√
n∑

k=1

d2ik ×
n∑

k=1

d2jk

(33)

In addition, for the reason that we divide and organize all literal information according
to semantics, this matcher based on semantic subgraphs also performs well for informative
ontologies.

10. Experimental Evaluation

We have implemented the method for matching weak informative ontologies in our on-
tology matching system Lily 9. Lily is implemented in Java and C++. In this section,
we first present the dataset, criteria, and settings used in the experiments. Secondly, we
verify the proposed method and compare with other works. Thirdly, we discuss the effect
of propagation scale strategies. Then we address the influence of initial similarity seeds
and propagation performance. Finally, we discuss the results on general ontology matching
tasks.

9https://github.com/npubird/LilyWIO
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10.1. Dataset, criteria and settings

In the evaluation, we use OAEI benchmark as the dataset. The reason is that the OAEI
benchmark includes not only informative ontologies but also some WIOs, which are very
similar to the WIOs used in practical applications. From 2004 to 2016, even though OAEI
benchmark has some changes in each year, it has little effect on the fairness of evaluation.
This paper uses benchmark2008 and benchmark200910, which are two similar versions of the
OAEI benchmark. The dataset has 110 matching tasks including 50 basic matching tasks
and 60 transformations from basic tasks. All matching tasks have non-sequential number
from 101 to 304.

According to characteristics of the dataset, we divide it into five groups:

• 101-104: This group contains same, irrelevant, language generalized and restricted
ontologies.

• 201-210: In this group, ontology structure is preserved, but labels and identifiers are
replaced by random names, misspellings, synonyms and foreign names. The comments
have been suppressed in some cases. These ontologies are similar to WIOs in industrial
applications.

• 221-247: This group is divided into two subgroups: 221-231 and 232-247. The first
subgroup contains 11 kinds of modifications. For example, the hierarchy is flattened or
expanded, and individuals, restrictions and data types are suppressed. In the second
subgroup, the modifications are the combinations of the ones used in 221-231.

• 248-266: Most ontologies in this group are weak informative ontologies. All labels
and identifiers are replaced by random names, and comments are also suppressed.
Therefore, all ontologies in this group are WIOs.

• 301-304: This group contains 4 real-world matching tasks.

We inspect the dataset manually and select the 78 WIOs as shown in Table 3. There is
no WIOs in three groups: 101-103, 221-247 and 301-304. All 67 ontologies in group 248-266
are WIOs. There are 11 WIOs in group 201-210. Therefore, the ratio of WIOs in this
datasets is 78/110 = 70.9%. These WIOs will be used to verify our method.

This paper uses the classical criteria: precision, recall and F1-measure to evaluate the
matching results. Let Q be the alignment of our method and T be the reference alignment,
then the precision, recall and F1-Measure are:

P =
|Q ∩ T |
|Q|

(34)

R =
|Q ∩ T |
|T |

(35)

F1-measure =
2PR

P +R
(36)

10http://oaei.ontologymatching.org/2009/benchmarks/
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Table 3: Overview of OAEI benchmark(2008,2009) dataset

group number of ontologies weak informative ontologies

101-104 3 N/A
201-210 18 201-6,201-8,202,202-4,202-6,202-8,205,206,207,209,210
221-247 18 N/A
248-266 67 all ontologies
301-304 4 N/A

In the evaluation, we set λ = 0.85 in circuit model, θ = 0.005 in SC-condition, and
ϕ = δ = 0.25 for checking weak informative ontologies.

10.2. Over performance on weak informative ontologies

We verify our method on the 78 weak informative ontology matching tasks listed in
Table 3. In order to simplify results, we do not list the matching result for each task, but
use the prefix numbers to divide the 78 matching tasks into 22 groups. For each group, we
present the average matching results. For example, the 202 group contains 4 matching tasks
with prefix 202, namely, 202, 202-4, 202-6 and 202-8, and we calculate the average precision,
recall and F1-measure on the 4 matching tasks. In addition, in the similarity propagation
model, we use the hybrid semantic subgraph propagation strategy.
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Figure 8: Matching results on weak informative ontologies

Figure 8 presents the matching results obtained by our method on the 22 groups. For
group 201-210 , our method produces high quality results, whose precisions are larger than
0.99 and recalls are larger than 0.87. The results mean that if the ontology structure is
preserved, misspellings, synonyms, foreign names, and even labels and identifiers are replaced
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by random names, our method still works perfectly. The explanation for this fact is that
our method can utilize limited literal information to generate few credible seeds and then
find more correct alignments by the similarity propagation model. Although all matching
tasks in group 248-266 are difficult, our method also perform well on them. For most tasks
in group 248-266, the precisions are larger than 0.8 and the recalls are larger than 0.7. For
group 254, 262, 265 and 266, we cannot obtain results with high recalls. The main reason is
that the ontology structure is not preserved, especially, the concept hierarchy is flattened and
there is no property. Moreover, comments are removed and labels are scrambled by random
names. Therefore, the similarity propagation cannot work without structure information,
and there is, theoretically, no matching method can deal with this situation.

As shown in Figure 9, we compare the results with similarity propagation and the results
without similarity propagation. The dataset used here is benchmark2008, which includes
both informative ontologies and weak informative ontologies. We run our matcher based on
semantic subgraphs (in Section 9) and the similarity propagation method (in Section 7 and
8), respectively. According to Figure 9, we observe the following facts.

• The similarity propagation method proposed in this paper improves the quality of
matching results, especially for the weak informative ontologies, such as the ontologies
in group 248-266.

• For the weak informative ontologies, our similarity propagation method can increase
the recall of results greatly. The reason is that our similarity propagation model can
discover more correct correspondences with few correspondences as seeds. Especially,
these new correspondences are difficult to be discovered by the methods without simi-
larity propagation. Therefore, our similarity propagation model can improve the recall
of matching results.

• For informative ontologies, such as group 221-247, our method can also produces good
results. It means that our method is a general matching method.

Table 4 and Table 5 compare the results obtained by different matching systems on the 22
group of weak informative ontologies in benchmark2008 and benchmark2009, respectively.
Lily is our matching system with the method for matching WIOs. The first column lists the
22 group matching tasks. From the second column, each column is the F1-measure results of
one system. The last row is the average F1-measure of each system. Especially, we compare
similarity flooding (SF) algorithm with other ontology matching systems.

Table 4 shows the results of 17 systems, in which the results of the first 13 systems are
retrieved from http://oaei.ontologymatching.org/2008/results, and results of AML11 and
LogMap 12 are obtained by running original source codes, respectively. SF stands for the
results of the similarity flooding algorithm. Not all systems perform well on the weak

11https://github.com/AgreementMakerLight/AML-Project
12https://github.com/ernestojimenezruiz/logmap-matcher
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Figure 9: Matching results without similarity propagation VS with similarity propagation (P1, R1 and F1
are the precision, recall and F1-measure for matcher based on semantic subgraphs; P2, R2 and F2 are the
precision, recall and F1-measure for similarity propagation model)

informative ontologies matching tasks. In fact, 11 in 17 systems are smaller than 0.6 F1-
measure, and 5 systems are in 0.6 to 0.8 F1-measure. Only Lily obtains the highest 0.82
F1-measure. Specially, Lily obtains the best matching results for most matching tasks.

Besides Lily, some systems in Table 4 (such as ASMOV, aflood, RIMOM, SAMBO,
GeRoMe) have their similarity propagation methods. They also have good performance on
the weak informative ontologies. It demonstrates that similarity propagation is an efficient
way to match weak informative ontologies.

Table 5 shows the matching results of 16 systems on weak informative matching tasks,
and the first 15 results are obtained from http://oaei.ontologymatching.org/2009/results.
Results of AML and LogMap is obtained by running source codes. It also can be seen
that Lily is the best system. Specifically, the F1-measure of 9 systems is small than 0.6,
and 6 systems have the F1-measure in 0.6 to 0.8. Only Lily and ASMOV get 0.82 and 0.8
F1-measure, respectively. For most matching tasks, Lily also obtains the best F1-measure.

It should be noted that the similarity flooding has very poor performance on the datasets.
The results support our analysis that similarity flooding cannot directly deal with ontology
matching.

Finally, we study some alignment cases in Table 4. First, we randomly select 4 alignments
obtained by Lily in 210 task, which is a cross-lingual ontology matching task. The selected
alignments are: MastersThesis = MémoireDeMastère, PhdThesis = MémoireDeDoctorat,
numberOrVolume = numéroOuVolume, LectureNotes = Polycopié. It is surprising that
Lily discovers these alignments without any external cross-lingual lexicon or resource. Lily
only uses similarity propagation with few seeds to find these correct alignments, and it
performs better than some systems with string-based matchers. Then, we randomly select
4 alignments obtained by Lily in 248 task, in which most literal information is replaced by
meaningless strings. The selected alignments are: numberOrVolume = dzezd, LectureNotes
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Table 4: Comparison of 17 systems on weak informative ontologies in benchmark2008 (F1-measure)

edna aflood aroma ASMOV CIDER DSSim GeRoMe TaxoMap MapPSO RiMOM SAMBO SAMBOdtf SPIDER AML LogMap SF Lily

201 0.32 0.83 0.99 1.00 0.85 0.95 0.86 0.27 0.41 1.00 0.65 0.65 0.85 0.52 0.48 0.32 1.00
202 0.32 0.84 0.74 0.90 0.46 0.62 0.55 0.15 0.30 0.93 0.43 0.43 0.46 0.58 0.00 0.25 0.93
205 0.34 0.69 0.99 0.99 0.85 0.84 0.88 0.16 0.31 0.99 0.57 0.61 0.85 0.41 0.38 0.20 0.99
206 0.51 0.90 0.99 0.99 0.76 0.92 0.85 0.00 0.36 0.99 0.61 0.71 0.76 0.12 0.40 0.16 0.99
207 0.51 0.90 0.99 0.99 0.74 0.93 0.85 0.00 0.37 0.99 0.61 0.71 0.74 0.12 0.40 0.16 0.99
209 0.33 0.64 0.71 0.89 0.41 0.54 0.51 0.06 0.23 0.86 0.40 0.47 0.41 0.36 0.00 0.00 0.92
210 0.52 0.87 0.79 0.93 0.50 0.56 0.66 0.08 0.19 0.92 0.37 0.59 0.50 0.36 0.00 0.00 0.94
248 0.41 0.59 0.72 0.89 0.52 0.67 0.47 0.19 0.37 0.93 0.52 0.52 0.52 0.49 0.00 0.22 0.93
249 0.40 0.76 0.54 0.87 0.55 0.51 0.54 0.19 0.38 0.86 0.52 0.52 0.55 0.50 0.47 0.50 0.89
250 0.23 0.74 0.79 0.87 0.60 0.70 0.66 0.42 0.42 0.91 0.52 0.52 0.60 0.00 0.48 0.00 0.93
251 0.40 0.73 0.76 0.88 0.54 0.68 0.55 0.17 0.37 0.83 0.52 0.52 0.54 0.50 0.00 0.00 0.91
252 0.62 0.73 0.82 0.93 0.71 0.79 0.59 0.28 0.54 0.92 0.71 0.71 0.71 0.69 0.00 0.69 0.94
253 0.41 0.60 0.49 0.84 0.52 0.51 0.47 0.19 0.38 0.82 0.52 0.52 0.52 0.49 0.46 0.49 0.87
254 0.23 0.70 0.63 0.70 0.52 0.70 0.09 0.43 0.40 0.70 0.52 0.52 0.52 0.52 0.46 0.37 0.70
257 0.23 0.55 0.60 0.68 0.60 0.51 0.66 0.42 0.41 0.75 0.52 0.52 0.60 0.54 0.48 0.38 0.73
258 0.40 0.73 0.51 0.80 0.54 0.52 0.54 0.17 0.38 0.68 0.52 0.52 0.54 0.50 0.45 0.25 0.86
259 0.63 0.71 0.69 0.89 0.71 0.72 0.59 0.28 0.56 0.85 0.70 0.70 0.71 0.69 0.68 0.38 0.93
260 0.20 0.75 0.73 0.81 0.56 0.71 0.50 0.42 0.40 0.85 0.51 0.51 0.56 0.52 0.46 0.41 0.85
261 0.32 0.80 0.77 0.81 0.71 0.76 0.61 0.58 0.45 0.76 0.68 0.68 0.71 0.72 0.65 0.40 0.83
262 0.23 0.52 0.45 0.51 0.52 0.51 0.09 0.43 0.41 0.52 0.52 0.52 0.52 0.52 0.46 0.35 0.52
265 0.03 0.12 0.00 0.12 0.00 0.00 0.19 0.00 0.03 0.18 0.00 0.00 0.00 0.00 0.00 0.12 0.24
266 0.02 0.05 0.00 0.10 0.00 0.00 0.08 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14
Avg. 0.35 0.67 0.67 0.79 0.55 0.62 0.54 0.22 0.35 0.78 0.50 0.52 0.55 0.42 0.31 0.26 0.82

Table 5: Comparison of 16 systems on weak informative ontologies in benchmark2009 (F1-measure)

edna aflood AgrMaker aroma ASMOV DSSim GeRoMe kosimap MapPSO RiMOM SOBOM TaxoMap AML LogMap SF Lily

201 0.32 0.94 0.94 0.99 1.00 0.89 0.97 0.67 1.00 1.00 0.53 0.26 0.52 0.48 0.34 1.00
202 0.31 0.92 0.43 0.72 0.90 0.62 0.67 0.45 0.72 0.94 0.25 0.19 0.42 0.00 0.25 0.92
205 0.34 0.82 0.98 0.99 0.99 0.86 0.98 0.69 0.99 0.99 0.45 0.15 0.41 0.38 0.25 0.99
206 0.52 0.95 0.93 0.99 0.99 0.77 0.95 0.77 0.99 0.99 0.00 0.10 0.00 0.40 0.16 0.99
207 0.52 0.95 0.93 0.99 0.99 0.77 0.95 0.77 0.99 0.99 0.00 0.10 0.12 0.40 0.20 0.99
209 0.35 0.80 0.35 0.73 0.90 0.53 0.70 0.48 0.67 0.88 0.17 0.09 0.36 0.00 0.16 0.93
210 0.52 0.94 0.33 0.77 0.97 0.53 0.73 0.70 0.69 0.87 0.00 0.00 0.36 0.00 0.18 0.94
248 0.41 0.82 0.52 0.71 0.90 0.68 0.71 0.52 0.36 0.87 0.32 0.22 0.32 0.00 0.24 0.94
249 0.41 0.91 0.52 0.51 0.84 0.52 0.59 0.53 0.07 0.84 0.33 0.24 0.50 0.47 0.26 0.90
250 0.24 1.00 0.52 0.77 0.88 0.70 0.77 0.54 0.64 0.91 0.52 0.51 0.07 0.48 0.40 0.91
251 0.40 0.78 0.52 0.74 0.92 0.69 0.71 0.50 0.66 0.87 0.31 0.22 0.50 0.00 0.28 0.91
252 0.62 0.84 0.71 0.80 0.94 0.80 0.84 0.69 0.72 0.86 0.49 0.34 0.69 0.00 0.30 0.94
253 0.40 0.69 0.52 0.48 0.82 0.52 0.58 0.52 0.08 0.75 0.32 0.22 0.50 0.46 0.22 0.88
254 0.22 0.70 0.52 0.60 0.70 0.70 0.66 0.49 0.36 0.70 0.52 0.48 0.52 0.46 0.37 0.70
257 0.23 0.96 0.52 0.54 0.68 0.51 0.61 0.54 0.64 0.72 0.52 0.51 0.54 0.48 0.38 0.75
258 0.40 0.69 0.52 0.49 0.84 0.52 0.58 0.50 0.15 0.68 0.31 0.22 0.50 0.45 0.28 0.86
259 0.62 0.78 0.71 0.69 0.90 0.73 0.74 0.69 0.19 0.67 0.49 0.34 0.69 0.68 0.32 0.92
260 0.19 0.78 0.51 0.68 0.81 0.71 0.73 0.53 0.45 0.79 0.52 0.51 0.52 0.46 0.45 0.85
261 0.31 0.84 0.69 0.71 0.80 0.76 0.78 0.70 0.45 0.75 0.71 0.69 0.72 0.65 0.42 0.80
262 0.23 0.52 0.52 0.44 0.52 0.51 0.51 0.49 0.42 0.51 0.52 0.48 0.52 0.46 0.34 0.51
265 0.02 0.24 0.00 0.00 0.12 0.00 0.00 0.13 0.10 0.15 0.00 0.00 0.00 0.00 0.00 0.24
266 0.02 0.11 0.00 0.00 0.10 0.00 0.00 0.11 0.06 0.09 0.00 0.00 0.00 0.00 0.00 0.15
Avg. 0.35 0.77 0.55 0.65 0.80 0.61 0.67 0.54 0.52 0.76 0.33 0.27 0.40 0.31 0.26 0.82

= scds, proceedings = zassdzadb, institution = hsgiuyza. These results are also existing.
Here, the initial seeds contain few alignments such as Address = Address and lastName =
lastName, then more and more correct alignments are got by similarity propagation. The
examination demonstrates that similarity propagation is a very effective way to deal with
weak informative ontologies. In the inverse perspective, we find some alignments obtained
by string-based systems, but the alignments are covered by results of Lily. The reason is that
the matcher based on semantic subgraphs in Lily is also an effective string-based matcher.
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Table 6: Comparison of different propagation scale strategies (F1-measure)

Size Seed S1 S2 S3 S4 S5

0 0.02 0.02 0.02 0.02 0.02 0.02
1 0.37 0.60 0.60 0.42 0.25 0.50
2 0.43 0.65 0.60 0.55 0.35 0.55
3 0.42 0.53 0.48 0.54 0.40 0.74
5 0.49 0.61 0.53 0.66 0.61 0.80
10 0.54 0.59 0.59 0.66 0.69 0.83
15 0.59 0.64 0.59 0.66 0.66 0.84
20 0.56 0.61 0.63 0.67 0.68 0.79
25 0.56 0.63 0.60 0.66 0.73 0.83
30 0.56 0.65 0.69 0.66 0.71 0.88
35 0.56 0.62 0.65 0.62 0.65 0.83
Avg. 0.53 0.62 0.61 0.66 0.68 0.83

Lily uses this matcher to provide initial seeds in similarity propagation.
Therefore, the above experimental results demonstrate that our method for matching

weak informative ontologies is very effective, and the matching system with our method can
perform better than other systems.

10.3. Evaluating propagation scale strategies

This experiment aims to evaluate the performance of different propagation scale strate-
gies. The results are obtained on the 248 matching task, which is selected randomly. Similar
experimental results and conclusions can also be obtained on any other weak informative
matching tasks. In this experiment, we use S1, S2, S3, S4 and S5 to represent five kinds of
propagation scale strategies mentioned in Section 8.

In order to demonstrate the influence of sizes of semantic subgraphs, we change sizes
of semantic subgraphs from 0 to 35. A 0-size semantic subgraph only contains an element,
that means the matching method only uses the information of the element. Introducing
the change of the semantic subgraph size will help us to know how to set suitable size for
semantic subgraphs in the similarity propagation.

Table 6 shows the experimental results (F1-measure) for comparing different strategies.
Size column is the semantic subgraph size. Seed denotes the F1-measure of initial similarity
seeds obtained by the matcher based on semantic subgraphs (in Section 9). Other columns
are the results obtained by different propagation scale strategies. The last row provides the
average F1-measure for semantic subgraphs from size 0 to 35.

According to the F1-measure of seeds, Table 6 shows that the similarity propagation can
improve the matching results. The performances of similarity propagation scale strategies
can be ranked as: S5>S4>S3>S1>S2. Further analyzing the experimental results, some
interesting facts are observed as follows:
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• Even the full graph strategy improves the quality of matching results, it is not the
best propagation scale strategy.

• It is surprising that the independent semantic subgraph strategy produces the worst
matching results. In this strategy, we find that some incorrect correspondences may
have high similarity values during similarity propagation. Since the independent se-
mantic subgraphs are too small, the noise similarity values cannot be suppressed in
propagation.

• Combined semantic subgraph strategy (S3 and S4) can produce better results than
above two strategies. That may be explained by the fact that the two strategies not
only remove some irrelevant information from ontologies, but also assure that some
noise similarity values can be suppressed during propagation. S3 and S4 have very
close average F1-measure. Therefore, two combined semantic subgraphs strategies can
improve the quality of results.

• The hybrid semantic subgraph propagation strategy (S5) is the best strategy and
produces the best results. The reason is that this strategy combines advantages of S2,
S3 and S4. Moreover, the cross validation function in S5 strategy also plays positive
role.

• Finally, we also find that bigger semantic subgraphs cannot always produce better
matching results. Therefore, we set reasonable size for semantic subgraphs in the
range 10 to 15.

10.4. Influence of initial similarity seeds

The traditional similarity flooding model claims that initial similarity seeds would not
affect propagation results. However, in our new model, we need to validate whether and how
our similarity propagation method is sensitive to initial similarity seeds. In this experiment,
we randomly modify seeds to satisfy the condition: Precision = Recall = F1-measure.
The experimental data is also obtained on 248 matching task. We let F1-measure of seeds
increases from 0 to 1.0 with step 0.1, then observe changes of F1-measure with different
propagation strategies.

Figure 10 shows the influence of initial similarity seeds to matching results. Line B
denotes the F1-measure of seeds. S1, S2, S3 and S5 are F1-measure lines for corresponding
propagation scale strategies. Since S4 has similar result to S3, we omit line S4.

We observe some interesting facts in Figure 10:

• The initial seeds influence the matching result greatly. With the changes of seed
F1-measure, matching results change monotonously.

• After similarity propagating, matching result is better than the initial seed. Mean-
while, better seeds would produce better matching results.
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Figure 10: Influence of initial seed to matching results

• Compared to other propagation scale strategies, S5 strategy is influenced by the seed
slightly. It means that S5 strategy can use seeds with low F1-measure to produce
higher quality results than other strategies. Therefore, S5 is the preferred propagation
scale strategy.

10.5. Propagation performance

In the practical ontology matching tasks, we find that the similarity propagation would
take up 30%-50% running time. The reason is that large semantic subgraphs would cause
large pairwise connectivity graphs, and the iteration process for calculating fixpoint would
also terminate slowly. Therefore, the semantic subgraph size is the key factor of performance.
We run our matching method with different propagation scale strategies on 248 task, then
record the running time. Meanwhile, for each propagation scale strategy, the semantic
subgraph size increases from 0 to 60 by 5 steps.

Figure 11 demonstrates the running time on various semantic subgraph sizes and different
propagation scale strategies. We have some interesting facts as follows:

• For S1, S2 and S3 strategies, the running time has no relevant to the semantic subgraph
sizes. When we change the semantic subgraph size, the lines of S1, S2 and S3 are almost
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Figure 11: Performances of different propagation scale strategies

steady. This result can be explained by the fact that the size of pairwise connectivity
graph will keep stable when the semantic subgraph size is larger than 5. Therefore,
we can infer that the running time of S1, S2 and S3 strategies have little correlation
with the semantic subgraph size.

• For the hybrid propagation scale strategy S5, Figure 11 shows that the running time
quickly increases with the semantic subgraph size increasing. There are two graphs
in this strategy, one is the independent semantic subgraph for an element, and an-
other is the combined semantic subgraph. When the semantic subgraph size increases,
although the size of combined semantic subgraph keeps steady, the independent se-
mantic subgraph will grow linearly. Therefore, the pairwise connectivity graph will
grow too. Finally, it needs more time to run the similarity propagation. This fact also
means that we should set suitable semantic subgraph size for hybrid propagation scale
strategy.

10.6. Performance on general ontology matching tasks

Our matching method for WIOs has been implemented in our ontology matching system
Lily. Lily first checks whether an ontology is weak informative, then uses similarity propa-
gation model to match weak informative ontologies and uses string-based matcher based on
semantic graphs (in Section 9) to match other ontologies.
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Table 7: Matching results on benchmark2008
Precision Recall F1-Measure Precision Recall F1-Measure

101 1.00 1.00 1.00 251* 0.96 0.76 0.85
103 1.00 1.00 1.00 251-2* 0.99 0.96 0.97
104 1.00 1.00 1.00 251-4* 0.99 0.90 0.94
201 1.00 1.00 1.00 251-6* 0.94 0.83 0.88
201-2 1.00 1.00 1.00 251-8* 0.99 0.85 0.91
201-4 1.00 1.00 1.00 252* 0.96 0.79 0.87
201-6* 1.00 1.00 1.00 252-2* 0.97 0.94 0.95
201-8* 1.00 1.00 1.00 252-4* 0.97 0.94 0.95
202* 1.00 0.84 0.91 252-6* 0.97 0.94 0.95
202-2 1.00 0.97 0.98 252-8* 0.97 0.94 0.95
202-4* 1.00 0.92 0.96 253* 0.81 0.59 0.68
202-6* 0.98 0.87 0.92 253-2* 0.98 0.93 0.95
202-8* 0.98 0.85 0.91 253-4* 1.00 0.92 0.96
203 1.00 1.00 1.00 253-6* 0.95 0.81 0.87
204 1.00 1.00 1.00 253-8* 0.95 0.79 0.86
205* 1.00 0.99 0.99 254* 1.00 0.27 0.43
206* 1.00 0.99 0.99 254-2* 1.00 0.82 0.90
207* 1.00 0.99 0.99 254-4* 1.00 0.70 0.82
208 1.00 0.99 0.99 254-6* 1.00 0.61 0.76
209* 0.97 0.88 0.92 254-8* 1.00 0.42 0.59
210* 1.00 0.89 0.94 257* 0.50 0.06 0.11
221 1.00 1.00 1.00 257-2* 1.00 0.97 0.98
222 1.00 1.00 1.00 257-4* 0.94 0.88 0.91
223 0.98 0.98 0.98 257-6* 0.84 0.79 0.81
224 1.00 1.00 1.00 257-8* 0.89 0.76 0.82
225 1.00 1.00 1.00 258* 0.80 0.60 0.69
228 1.00 1.00 1.00 258-2* 0.97 0.94 0.95
230 0.94 1.00 0.97 258-4* 0.96 0.88 0.92
231 1.00 1.00 1.00 258-6* 0.95 0.82 0.88
232 1.00 1.00 1.00 258-8* 0.94 0.78 0.85
233 1.00 1.00 1.00 259* 0.89 0.70 0.78
236 1.00 1.00 1.00 259-2* 0.98 0.95 0.96
237 1.00 1.00 1.00 259-4* 0.98 0.95 0.96
238 0.99 0.99 0.99 259-6* 0.98 0.95 0.96
239 0.97 1.00 0.98 259-8* 0.98 0.95 0.96
240 0.97 1.00 0.98 260* 0.94 0.55 0.69
241 1.00 1.00 1.00 260-2* 0.96 0.93 0.94
246 0.97 1.00 0.98 260-4* 0.93 0.93 0.93
247 0.94 0.97 0.95 260-6* 0.96 0.79 0.87
248* 1.00 0.81 0.90 260-8* 0.88 0.72 0.79
248-2* 1.00 0.95 0.97 261* 0.67 0.48 0.56
248-4* 1.00 0.92 0.96 261-2* 0.88 0.91 0.89
248-6* 1.00 0.88 0.94 261-4* 0.88 0.91 0.89
248-8* 0.98 0.85 0.91 261-6* 0.88 0.91 0.89
249* 0.83 0.66 0.74 261-8* 0.88 0.91 0.89
249-2* 0.98 0.95 0.96 262* 0.00 0.00 0.00
249-4* 0.98 0.91 0.94 262-2* 1.00 0.79 0.88
249-6* 0.98 0.87 0.92 262-4* 1.00 0.61 0.76
249-8* 0.95 0.82 0.88 262-6* 1.00 0.42 0.59
250* 0.90 0.58 0.71 262-8* 1.00 0.21 0.35
250-2* 1.00 1.00 1.00 265* 0.80 0.14 0.24
250-4* 1.00 1.00 1.00 266* 0.30 0.09 0.14
250-6* 1.00 1.00 1.00 301 0.94 0.82 0.88
250-8* 1.00 0.88 0.94 302 0.89 0.65 0.75

303 0.65 0.71 0.68
304 0.95 0.97 0.96
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Table 7 presents detailed matching results on benchmark2008 by Lily. Matching task
numbers with star are weak informative matching tasks. Lily performs very well on the
informative ontology matching tasks. For group 101-104 and 221-247, matching results are
perfect and average precision, recall and F1-measure are all 0.99. For the real-world group
301-304, Lily also obtains good results with average 0.86 precision, 0.79 recall and 0.82
F1-measure. For most weak informative ontologies matching tasks in group 201-210 and
248-266, Lily also gets good results. We notice that matching results on 254, 257, 261,
262, 262-6, 262-8, 265 and 266 have less than 0.6 F1-measure. The reason is that not only
the ontology structures are suppressed, but also almost all meaningful literal information is
removed.

Table 8 shows results of 15 matching systems on benchmark2008 [22, 34], which is also
divided into five groups: 101-104, 201-210, 221-247, 248-266 and 301-304. Here the average
results on each group are presented in a row, and the last row shows the overall average results
for all matching tasks. (1) Group 101-104 contains some simple matching tasks, except
GeRoMe and TaxoMap, other 12 systems obtain good results, and 8 systems including Lily
have 1.00 F1-measure. (2) For group 201-210, since some ontologies are weak informative,
some systems do not perform well. F1-measure of 6 systems is higher than 0.80. F1-measure
of 4 systems is higher than 0.90. The best three systems: ASMOV, RiMOM and Lily get
0.97 F1-measure. (3) For group 221-247, 11 systems perform very well and have F1-measure
of higher than 0.90. RiMOM has the perfect result with 1.00 F1-measure. Lily has similar
results with 0.99 F1-measure. (4) For group 248-266, most systems cannot deal with these
tasks efficiently. Only 3 systems have higher than 0.70 F1-measure, and they are ASMOV,
Lily and RiMOM. Only Lily and ASMOV have 0.80 and 0.82 F1-measure, respectively. Lily
has 0.92 precision and 0.76 recall, which are the best results in all systems. Lily performs
best on this difficult group and obtains better results than most systems. (5) For group 301-
304, not all systems can perform well on the real-world matching tasks, and only 4 systems
have higher than 0.8 F1-measure. Best F1-measure is 0.86 by SAMBO. Lily has 0.82 F1-
measure. For the overall average results, only 3 systems, ASMOV, RiMOM and Lily, have
higher than 0.80 F1-measure. That dues to good performance on weak informative ontology
matching tasks. Lily has average 0.88 F1-measure, 0.94 precision and 0.84 recall, all of them
are the best in all systems.

Table 9 shows results of 15 systems on benchmark2009 [35, 36]. Lily is also one of the
best systems. Especially for group 248-266, Lily still obtains best results. For the overall
average results, 4 systems have average higher than 0.8 F1-measure: ASMOV, Lily, Anchor-
Flood and RiMOM. Lily has the best F1-measure of 0.88 and best recall of 0.84. Lily also
has 0.95 precision, only lower than 0.97 precision by Anchor-Flood.

11. Related Work

Many ontology matching techniques have been proposed. Some researchers have given
very comprehensive surveys for this open problem [4, 5, 3, 7, 6, 8, 9]. In recent years, this
problem still attracts the attentions of researchers, and new ontology matching methods are
proposed. Zhao et al. proposed a method based on formal concept analysis to identify and
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validate mappings across ontologies [37]. Faria et al. discussed the methodology for automat-
ically selecting background knowledge sources for any given ontologies to match [38]. The
simulated annealing, which is a evolutionary algorithm, was also used to find the mappings
between two given ontologies while no ground truth is available [39]. However, these works
ignore the weak informative ontologies in a lot of practical applications. This paper mainly
focuses on the weak informative ontology matching problem. Structure-based method is a
feasible way to deal with this special matching problem. For the reason that the ontology
graph topology cannot represent the semantics reasonably, methods using classical graph
matching algorithm cannot work and has unsatisfied matching performance. Therefore, the
method based on similarity propagation idea is the practical way to solve the problem.

Blondel et al. proposed a iteration equation for measuring the similarity between directed
graphs [19]. It is based on theHub−Authority idea, which is a kind of similarity propagation.
Leicht et al. proposed a more general measurement for the vertex similarity in network [31],
they also pointed out that Blondel’s method is a special case of their method. However,
the two graph matching methods can only calculate the vertex similarity in graph, but
cannot deal with the edge similarity. To overcome this shortcoming, Hu et al. used the
bipartite graph to represent the ontology graph, and then they modified Blondel’s method
to handle ontology graph matching problem [30]. This method is implemented in Falcon-
AO [15]. Inspired by these work, Tous and Delgado first represented ontology graphs as the
vector space, then used Blondel’s graph matching algorithm to matching weak informative
ontologies [40] and obtained close performance to Falcon-AO.

Similarity flooding [17] is the most popular algorithm inspired by the similarity propaga-
tion, but it cannot be directly used for ontology matching (see the reasons we discussed in
previous sections). However, some weak informative ontology matching methods are based
on similarity flooding.

Noy and Musen proposed AnchorPrompt algorithm [29] to find alignment between con-
cepts by analyzing the ontology graph structure. The principle of AnchorPrompt is that if
two pairs of elements from different ontologies are similar and there are paths connecting
the elements, then elements in those paths are often similar as well. Therefore, it is also a
variation of the similarity flooding idea. However, this approach does not work well when
ontologies are constructed in different ways. For example, one ontology has a deep concept
hierarchy with many inter-linked concepts and another ontology is a shallow one where the
hierarchy has only a few levels.

In ontology mapping system RiMOM [16], Li and Tang et al. used three propagation
strategies for structure matching: (1) propagation between concepts; (2) propagation be-
tween relations; (3) propagation between concepts and relations. This method employs
ontological structure information to design propagation for matching ontologies. It is a very
successful variation of similarity flooding for ontology matching.

In ASMOV [41], Jean-Mary et al. used two structural similarities: a relational similarity
and an internal similarity, to discover alignments. The relational similarity is computed by
combining the similarities between parents and children. The internal similarity is calculated
by considering domain and range of properties, property restrictions associated to a concept
and other structure information. These structural similarities are calculated iteratively, and
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also use similarities propagated by neighbors. Therefore, it can be seen as a special case of
similarity flooding.

Seddiqui and Aono proposed Anchor-Flood algorithm [42]. This algorithm first uses
few initial correspondences and gradually explored concepts by collecting concept neighbors
and other graph data structure to output a set of correspondences between concepts and
properties in semantically connected subsets. The process runs iteratively until the algorithm
satisfies the condition: either all the collected concepts are explored, or no new aligned pair
is found. This method is also inspired by the idea of similarity flooding.

In AgreementMaker [43], Cruz et al.used a structure-based matcher called DSI ( Descen-
dant’s Similarity Inheritance). DSI is based on the heuristic rule: if two nodes are matched
with high similarity, then the similarity between the descendants of those nodes should in-
crease. It is also a kind of variation of similarity flooding. DSI matcher is also used by
another system CSA [44].

In SAMBO [45], Lambrix and Tan proposed a structural matcher, which was an iterative
algorithm based on the is-a and part-of hierarchies of ontologies. The algorithm is based
on the intuition: if two concepts are in similar positions with respect to is-a or part-of
hierarchies and are relative to already aligned concepts, then they are likely to be similar as
well.

In GeRoMe [46, 47], Quix et al. also found that direct Similarity Flooding had no
positive effect on the matching quality. Meanwhile, this matching system designed structural
similarity called children and parent matchers, which propagate the similarity of elements
up and down in the class hierarchy.

In PRIOR+ [48], Mao et al. did not directly use similarity flooding, but they proposed
an important similarity called profile similarity. This method first generates a profile for
each element using label, comments and other related literal information of the element,
then the profile of the element’s ancestors, descendants and siblings will be passed to that of
the element with different weights. Finally, the cosine similarity between the profiles of two
elements is calculated in a vector space model. We believe this is also a kind of variation of
similarity flooding, because the profile propagation is a kind of similarity propagation.

In LogMap [25, 26], Jiménez-Ruiz et al. realized a similar propagation idea. First,
LogMap computes an initial set of equivalence anchor mappings by intersecting the lexical
indexes of each input ontology. Then these mappings will later serve as starting point for
the further discovery of additional mappings. This mapping discovery strategy is based on
a principle: if classes C1 and C2 are correctly mapped, then the classes semantically related
to C1 in O1 are likely to be mapped to those semantically related to C2 in O2.

Similarity flooding idea is also used in DSSim [49] and YAM++ [50]. YAM++ proposed
the confidence propagation based on similarity flooding [51]. The intuition behind the
confidence propagation is that the similarity of the two matched concepts will contribute in
some degree of confidence to the similarity of their relatives along the same path of semantic
relations.

Since some weak informative ontologies in OAEI benchmark datasets can be seen as
different versions of the same ontology, CODI [52] first matches different ontology versions,
then refines the matching results by markov logic framework [53]. However, this method
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also can be used in matching tasks not generated by different versions.
Similar problem also arises in schema matching in database research field. For example,

the column names in the schemas and the data in the columns are opaque or very difficult to
interpret. Kang and Naughton presented two-step technique that works even in the presence
of opaque column names and data values [54]. They constructed a dependency graph using
mutual information, then found matching node pairs in dependency graphs by running a
graph matching algorithm. However, it is an instance-based matcher and cannot solve the
concept matching or property matching in ontologies.

Compared to current works, our method has some features: (1) It is the first general
similarity propagation framework for ontology matching instead of some heuristic propa-
gation rules, and it can discover alignments of concepts, properties and instances. (2) It
uses semantic subgraphs to capture precise meanings of ontology elements, then constructs
semantic description documents, finally, designs a matcher to provide few credible corre-
spondences as seeds for similarity propagation model. (3) It utilizes the strong constraint
condition and semantic subgraphs to restrict the range of similarity propagation, that can
avoid the meaningless propagations. Meanwhile, our method also has limitations: (1) First,
extracting semantic subgraphs for all elements is a time-consuming process, in which solving
the linear equations in the circuit model is the time bottleneck. Fortunately, this limitation
can be solved by parallel computing. (2) Second, there are more parameters (such as se-
mantic graph size) and settings (such as propagation strategy) in our method, it needs more
experiences to tune the parameters and select reasonable settings. In our ongoing work, we
are designing the automatic tuning method to help users to select optimized parameters and
settings.

12. Conclusion

This paper proposes a method for matching weak informative ontologies. The success of
our method is due to two techniques: semantic subgraphs and a new similarity propagation
model. Semantic subgraphs can precisely describe ontology elements with limited triples.
The similarity propagation model is based on the strong constrained condition, and it is
reasonable for handling ontology matching. Some useful propagation strategies are also
adopted to improve matching results. Our method is used for discovering correspondences
between concepts or properties. However, in recent years, knowledge base such as knowledge
graph [55] usually contains large scale instances, which would also be weak informative. In
the very near future, we will extend our method for matching large scale knowledge graphs.
In addition, except using WordNet to define weak informative ontology, we do not use
any external knowledge or data in ontology matching. In the future, we will enhance the
matcher based on semantic subgraphs using word2vec [56] and knowledge graph embedding
[57], which are trained on external corpus and knowledge graphs respectively. That would
provide more credible seeds for similarity propagation.
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