Skip to main content
Log in

Optical true time delay pool-based beamforming and limited feedback for reconfigurable intelligent surface-empowered cloud radio access networks

  • Research Paper
  • Special Focus on Reconfigurable Intelligent Surfaces for Future Wireless Communications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Introducing reconfigurable intelligent surfaces (RISs) greatly improves the wireless propagation environment. Limited to feedback overheads and computing power, the low-complexity precoding and the cost-effective beamforming implementation are urgently demanded in RIS-empowered millimeter-wave cloud radio access networks (mmWave C-RANs). Herein, an optical true time delay pool-based hybrid beam-forming (OTTDP-based HBF) scheme, enabling centralized analog beamforming control, is proposed for RIS-empowered mmWave C-RANs. By using codebook quantization techniques, we develop a non-iterative limited feedback (NI-LF) precoding algorithm for the RIS-empowered mmWave C-RAN using the proposed OTTDP-based HBF. In the NI-LF precoding algorithm, the complex joint optimization problem of hybrid precoding and phase-shifting of RIS is equivalently formulated as a maximum ratio transmission (MRT) problem and a sparse reconstruction problem. For an active antenna unit (AAU) equipped with eight antennas, a designed example of the proposed OTTDP is presented. Furthermore, for a RIS-empowered mmWave C-RAN at 28 GHz, the received signal-to-noise ratio (SNR) curves obtained via different precoding schemes are compared and discussed. Compared with the precoding without RIS, the proposed NI-LF precoding by using different codebooks to quantize the phase-shifting of the RIS respectively achieves 20.56, 19.55, and 18.93 dB performance improvement for the user located near the 49-element RIS. Moreover, performance degradations due to limited feedback are analyzed. The computational complexity and overhead of the proposed NI-LF precoding algorithm are also given and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X Y, Yu J J, Chang G K. Photonics-assisted technologies for extreme broadband 5G wireless communications. J Lightwave Technol, 2019, 37: 2851–2865

    Article  Google Scholar 

  2. Lien S Y, Shieh S L, Huang Y, et al. 5G new radio: waveform, frame structure, multiple access, and initial access. IEEE Commun Mag, 2017, 55: 64–71

    Article  Google Scholar 

  3. Kutty S, Sen D. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun Surv Tutorials, 2016, 18: 949–973

    Article  Google Scholar 

  4. Zhang P, Yi C, Yang B S, et al. In-building coverage of millimeter-wave wireless networks from channel measurement and modeling perspectives. Sci China Inf Sci, 2020, 63: 180301

    Article  MathSciNet  Google Scholar 

  5. Bai T, Heath J R W. Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans Wireless Commun, 2015, 14: 1100–1114

    Article  Google Scholar 

  6. Li L M, Wang D M, Niu X K, et al. mmWave communications for 5G: implementation challenges and advances. Sci China Inf Sci, 2018, 61: 021301

    Article  Google Scholar 

  7. Sung M, Kim J, Kim E S, et al. RoF-based radio access network for 5G mobile communication systems in 28 GHz millimeter-wave. J Lightwave Technol, 2020, 38: 409–420

    Article  Google Scholar 

  8. Kalfas G, Vagionas C, Antonopoulos A, et al. Next generation fiber-wireless fronthaul for 5G mmWave networks. IEEE Commun Mag, 2019, 57: 138–144

    Article  Google Scholar 

  9. Alimi I A, Teixeira A L, Monteiro P P. Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges, and solutions. IEEE Commun Surv Tut, 2018, 20: 708–769

    Article  Google Scholar 

  10. Li C G, Song K, Wang D M, et al. Optimal remote radio head selection for cloud radio access networks. Sci China Inf Sci, 2016, 59: 102315

    Article  Google Scholar 

  11. Wu C Y, Li H, Caytan O, et al. Distributed multi-user MIMO transmission using real-time sigma-delta-over-fiber for next generation fronthaul interface. J Lightwave Technol, 2020, 38: 705–713

    Article  Google Scholar 

  12. Wu C Y, Li H, van Kerrebrouck J, et al. Distributed antenna system using sigma-delta intermediate-frequency-over-fiber for frequency bands above 24 GHz. J Lightwave Technol, 2020, 38: 2765–2773

    Article  Google Scholar 

  13. Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 2016, 10: 501–513

    Article  Google Scholar 

  14. Ayach O E, Rajagopal S, Abu-Surra S, et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wireless Commun, 2014, 13: 1499–1513

    Article  Google Scholar 

  15. Ye X, Zhang F, Pan S. Optical true time delay unit for multi-beamforming. Opt Express, 2015, 23: 10002–10008

    Article  Google Scholar 

  16. Combi L, Spagnolini U. Adaptive optical processing for wideband hybrid beamforming. IEEE Trans Commun, 2019, 67: 4967–4979

    Article  Google Scholar 

  17. Perez-Lopez D, Sanchez E, Capmany J. Programmable true time delay lines using integrated waveguide meshes. J Lightwave Technol, 2018, 36: 4591–4601

    Article  Google Scholar 

  18. Blais S, Yao J. Photonic true-time delay beamforming based on superstructured fiber bragg gratings with linearly increasing equivalent chirps. J Lightwave Technol, 2009, 27: 1147–1154

    Article  Google Scholar 

  19. Yang D H, Lin W P. Phased-array beam steering using optical true time delay technique. Optics Commun, 2015, 350: 90–96

    Article  Google Scholar 

  20. Love D J, Heath J R N, Lau V K N, et al. An overview of limited feedback in wireless communication systems. IEEE J Sel Areas Commun, 2008, 26: 1341–1365

    Article  Google Scholar 

  21. Xu D Y, Ren P Y, Du Q H, et al. Towards win-win: weighted-Voronoi-diagram based channel quantization for security enhancement in downlink cloud-RAN with limited CSI feedback. Sci China Inf Sci, 2017, 60: 040303

    Article  Google Scholar 

  22. Alkhateeb A, Leus G, Heath J R W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wireless Commun, 2015, 14: 6481–6494

    Article  Google Scholar 

  23. Ayach O E, Rajagopal S, Abu-Surra S, et al. Limited feedback hybrid beamforming for multi-mode transmission in wideband millimeter wave channel. IEEE Trans Wireless Commun, 2020, 19: 4008–4022

    Article  Google Scholar 

  24. Wang J Y, Lan Z, Pyo C-W, et al. Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE J Sel Areas Commun, 2009, 27: 1390–1399

    Article  Google Scholar 

  25. Han Y, Jin S, Zhang J, et al. DFT-based hybrid beamforming multiuser systems: rate analysis and beam selection. IEEE J Sel Top Signal Process, 2018, 12: 514–528

    Article  Google Scholar 

  26. Bantavis P I, Kolitsidas C I, Empliouk T, et al. A cost-effective wideband switched beam antenna system for a small cell base station. IEEE Trans Antenn Propagat, 2018, 66: 6851–6861

    Article  Google Scholar 

  27. Huang H, Zhang C F, Chen C, et al. Optical true time delay pools based centralized beamforming control for wireless base stations phased-array antennas. J Lightwave Technol, 2018, 36: 3693–3699

    Article  Google Scholar 

  28. Huang H, Zhang C F, Yang C A, et al. Optical true time delay pool based hybrid beamformer enabling centralized beamforming control in millimeter-wave C-RAN systems. Sci China Inf Sci, 2020. doi: https://doi.org/10.1007/s11432-020-2991-1

  29. Gong S, Lu X, Hoang D T, et al. Toward smart wireless communications via intelligent reflecting surfaces: a contemporary survey. IEEE Commun Surv Tut, 2020, 22: 2283–2314

    Article  Google Scholar 

  30. Guo H, Liang Y C, Chen J, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans Wireless Commun, 2020, 19: 3064–3076

    Article  Google Scholar 

  31. Huang C, Zappone A, Alexandropoulos G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wireless Commun, 2019, 18: 4157–4170

    Article  Google Scholar 

  32. Wang Z, Shi Y, Zhou Y, et al. Wireless-powered over-the-air computation in intelligent reflecting surface-aided IoT networks. IEEE Internet Things J, 2021, 8: 1585–1598

    Article  Google Scholar 

  33. Wu Q, Zhang R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag, 2020, 58: 106–112

    Article  Google Scholar 

  34. Wu Q, Zhang R. Intelligent reflecting surface enhanced wireless network: joint active and passive beamforming design. In: Proceedings of IEEE Global Communications Conference, United Arab Emirates, 2018. 1–6

  35. Wu Q, Zhang R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wireless Commun, 2019, 18: 5394–5409

    Article  Google Scholar 

  36. Yang M C, Huang H, Zhang C F, et al. Optical codebook-based hybrid precoding for intelligent reflecting surface-assisted mmWave C-RAN systems. In: Proceedings of Asia Communications and Photonics Conference, Beijing, 2020. 336

  37. Pradhan C, Li A, Song L, et al. Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems. IEEE Wireless Commun Lett, 2020, 9: 1041–1045

    Article  Google Scholar 

  38. Shi Y, Zhang J, Letaief K B. Group sparse beamforming for green cloud-RAN. IEEE Trans Wireless Commun, 2014, 13: 2809–2823

    Article  Google Scholar 

  39. Wang Q, Zhou F, Hu R Q, et al. Energy efficient robust beamforming and cooperative jamming design for IRS-assisted MISO networks. IEEE Trans Wireless Commun, 2021, 20: 2592–2607

    Article  Google Scholar 

  40. Zhou F, Li Z, Cheng J, et al. Robust AN-aided beamforming and power splitting design for secure MISO cognitive radio with SWIPT. IEEE Trans Wireless Commun, 2017, 16: 2450–2464

    Article  Google Scholar 

  41. Dai L, Wang B, Peng M, et al. Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 2019, 37: 131–141

    Article  Google Scholar 

  42. Lu X, Yang W, Guan X, et al. Robust and secure beamforming for intelligent reflecting surface aided mmWave MISO systems. IEEE Wireless Commun Lett, 2020, 9: 2068–2072

    Article  Google Scholar 

  43. Chae C-B, Mazzarese D, Jindal N, et al. A low complexity linear multiuser MIMO beamforming system with limited feedback. In: Proceedings of the 42nd Annual Conference on Information Sciences and Systems, Princeton, 2008. 418–422

  44. Björnson E, Jorswieck E. Optimal resource allocation in coordinated multi-cell systems. Found Trends Commun Inf Theor, 2013, 9: 173–234

    Article  MATH  Google Scholar 

  45. Liu H, Yuan X, Zhang Y J A. Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO. IEEE J Sel Areas Commun, 2020, 38: 2621–2636

    Article  Google Scholar 

  46. Jung M, Saad W, Kong G. Performance analysis of active large intelligent surfaces (LISs): uplink spectral efficiency and pilot training. IEEE Trans Commun, 2021. doi: https://doi.org/10.1109/TCOMM.2021.3056532

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2018YFB1801302), Project for Zhongshan Social Public Welfare Science and Technology (Grant No. 2019B2007), and Project for Innovation Team of Guangdong University (Grant No. 2018KCXTD033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongfu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, X., Zhang, C. et al. Optical true time delay pool-based beamforming and limited feedback for reconfigurable intelligent surface-empowered cloud radio access networks. Sci. China Inf. Sci. 64, 200303 (2021). https://doi.org/10.1007/s11432-020-3253-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3253-7

Keywords

Navigation