Skip to main content
Log in

Event-triggered robust MPC of nonlinear cyber-physical systems against DoS attacks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes an event-triggered robust nonlinear model predictive control (NMPC) framework for cyber-physical systems (CPS) in the presence of denial-of-service (DoS) attacks and additive disturbances. In the framework, a new robustness constraint is introduced to the NMPC optimization problem in order to deal with additive disturbances, and a packet transmission strategy is designed for NMPC such that DoS attacks can be tackled. Then, an event-triggered mechanism, which accommodates DoS attacks occurring in the communication network, is proposed to reduce the communication cost for resource-constrained CPSs. Besides, we prove that the NMPC algorithm is recursively feasible and the closed-loop system is input-to-state practical stable under some sufficient conditions. Simulation examples and comparisons are conducted to show the effectiveness of the proposed NMPC algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Colombo A W, Karnouskos S, Kaynak O, et al. Industrial cyberphysical systems: a backbone of the fourth industrial revolution. IEEE Ind Electron Mag, 2017, 11: 6–16

    Article  Google Scholar 

  2. Khaitan S K, McCalley J D. Design techniques and applications of cyberphysical systems: a survey. IEEE Syst J, 2015, 9: 350–365

    Article  Google Scholar 

  3. Cardenas A A, Amin S, Sastry S. Secure control: towards survivable cyber-physical systems. In: Proceedings of the 28th International Conference on Distributed Computing Systems Workshops, Beijing, 2008. 495–500

  4. Rieger C G, Gertman D I, McQueen M A. Resilient control systems: next generation design research. In: Proceedings of the 2nd Conference on Human System Interactions, Catania, 2009. 632–636

  5. Dolk V S, Tesi P, de Persis C, et al. Event-triggered control systems under denial-of-service attacks. IEEE Trans Control Netw Syst, 2017, 4: 93–105

    Article  MathSciNet  MATH  Google Scholar 

  6. Amin S, Cárdenas A A, Sastry S S. Safe and secure networked control systems under denial-of-service attacks. In: Proceedings of the 12th International Conference on Hybrid Systems: Computation & Control, San Francisco, 2009. 31–45

  7. Pasqualetti F, Dorfler F, Bullo F. Attack detection and identification in cyber-physical systems. IEEE Trans Automat Contr, 2013, 58: 2715–2729

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang H, Cheng P, Shi L, et al. Optimal denial-of-service attack scheduling with energy constraint. IEEE Trans Automat Contr, 2015, 60: 3023–3028

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang D, Feng G, Shi Y, et al. Physical safety and cyber security analysis of multi-agent systems: a survey of recent advances. IEEE/CAA J Autom Sin, 2021, 8: 319–333

    Article  MathSciNet  Google Scholar 

  10. Zhang D, Wang Q G, Feng G, et al. A survey on attack detection, estimation and control of industrial cyber․physical systems. ISA Trans, 2021, 116: 1–16

    Article  Google Scholar 

  11. Zhou C, Hu B, Shi Y, et al. A unified architectural approach for cyberattack-resilient industrial control systems. Proc IEEE, 2021, 109: 517–541

    Article  Google Scholar 

  12. Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: stability and optimality. Automatica, 2000, 36: 789–814

    Article  MathSciNet  MATH  Google Scholar 

  13. Gommans T M P, Heemels W P M H. Resource-aware MPC for constrained nonlinear systems: a self-triggered control approach. Syst Control Lett, 2015, 79: 59–67

    Article  MathSciNet  MATH  Google Scholar 

  14. Li H, Shi Y. Event-triggered robust model predictive control of continuous-time nonlinear systems. Automatica, 2014, 50: 1507–1513

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun Q, Chen J, Shi Y. Integral-type event-triggered model predictive control of nonlinear systems with additive disturbance. IEEE Trans Cybern, 2020. doi: https://doi.org/10.1109/TCYB.2019.2963141

  16. Foroush H S, Martinez S. On event-triggered control of linear systems under periodic denial-of-service jamming attacks. In: Proceedings of the 51st IEEE Conference on Decision and Control (CDC), Maui, 2012. 2551–2556

  17. Hu S, Yue D, Xie X, et al. Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks. IEEE Trans Cybern, 2019, 49: 4271–4281

    Article  Google Scholar 

  18. Zhu Y, Zheng W X. Observer-based control for cyber-physical systems with periodic DoS attacks via a cyclic switching strategy. IEEE Trans Automat Contr, 2020, 65: 3714–3721

    Article  MathSciNet  MATH  Google Scholar 

  19. de Persis C, Tesi P. Input-to-state stabilizing control under denial-of-service. IEEE Trans Automat Contr, 2015, 60: 2930–2944

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng S, Tesi P. Resilient control under denial-of-service: robust design. Automatica, 2017, 79: 42–51

    Article  MathSciNet  MATH  Google Scholar 

  21. Cetinkaya A, Kikuchi K, Hayakawa T, et al. Randomized transmission protocols for protection against jamming attacks in multi-agent consensus. Automatica, 2020, 117: 108960

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu S, Li S, Xu B. Event-triggered resilient control for cyber-physical system under denial-of-service attacks. Int J Control, 2020, 93: 1907–1919

    Article  MathSciNet  MATH  Google Scholar 

  23. Befekadu G K, Gupta V, Antsaklis P J. Risk-sensitive control under markov modulated denial-of-service (DoS) attack strategies. IEEE Trans Automat Contr, 2015, 60: 3299–3304

    Article  MathSciNet  MATH  Google Scholar 

  24. Åström K J, Bernhardsson B. Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, 2002. 2011–2016

  25. Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Automat Contr, 2007, 52: 1680–1685

    Article  MathSciNet  MATH  Google Scholar 

  26. Varutti P, Kern B, Faulwasser T, et al. Event-based model predictive control for networked control systems. In: Proceedings of the 48th IEEE Conference on Decision & Control and 28th Chinese Control Conf (CDC/CCC), Shanghai, 2009. 567–572

  27. Eqtami A, Dimarogonas D V, Kyriakopoulos K J. Novel event-triggered strategies for model predictive controllers. In: Proceedings of the 50th IEEE Conference on Decision & Control and European Control Conference (CDC/ECC), Orlando, 2011. 3392–3397

  28. Lehmann D, Henriksson E, Johansson K H. Event-triggered model predictive control of discrete-time linear systems subject to disturbances. In: Proceedings of European Control Conference (ECC), Zurich, 2013. 1156–1161

  29. Sun Q, Zhang K, Shi Y. Resilient model predictive control of cyber-physical systems under DoS attacks. IEEE Trans Ind Inf, 2020, 16: 4920–4927

    Article  Google Scholar 

  30. Wang J, Ding B, Hu J. Security control for LPV system with deception attacks via model predictive control: a dynamic output feedback approach. IEEE Trans Automat Contr, 2021, 66: 760–767

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun Y C, Yang G H. Robust event-triggered model predictive control for cyber-physical systems under denial-of-service attacks. Int J Robust Nonlin Control, 2019, 29: 4797–4811

    Article  MathSciNet  MATH  Google Scholar 

  32. Sontag E D, Wang Y. New characterizations of input-to-state stability. IEEE Trans Automat Contr, 1996, 41: 1283–1294

    Article  MathSciNet  MATH  Google Scholar 

  33. Li H, Shi Y. Network-based predictive control for constrained nonlinear systems with two-channel packet dropouts. IEEE Trans Ind Electron, 2014, 61: 1574–1582

    Article  Google Scholar 

  34. Quevedo D E, Nesic D. Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts. IEEE Trans Automat Contr, 2011, 56: 370–375

    Article  MathSciNet  MATH  Google Scholar 

  35. Rawlings J B, Mayne D Q. Model Predictive Control: Theory and Design. Madison: Nob Hill Publishing, 2009

    Google Scholar 

  36. Andersson J A E, Gillis J, Horn G, et al. CasADi: a software framework for nonlinear optimization and optimal control. Math Prog Comp, 2019, 11: 1–36

    Article  MathSciNet  MATH  Google Scholar 

  37. Li H P, Shi Y. Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems. Berlin: Springer, 2017

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Chen, J. & Shi, Y. Event-triggered robust MPC of nonlinear cyber-physical systems against DoS attacks. Sci. China Inf. Sci. 65, 110202 (2022). https://doi.org/10.1007/s11432-020-3289-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3289-1

Keywords

Navigation