Skip to main content
Log in

Low-cost intelligent reflecting surface aided Terahertz multiuser massive MIMO: design and analysis

  • Research Paper
  • Special Focus on Reconfigurable Intelligent Surfaces for Future Wireless Communications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Terahertz (THz) multiuser massive multiple-input multiple-output (MIMO) has been envisioned as a promising technique to support massive connectivity in next-generation wireless networks. However, due to ultra-high frequency band, the path attenuation of THz channels is extremely severe, resulting in limited wireless coverage. In this paper, we propose an intelligent reflecting surface (IRS)-assisted THz multiuser massive MIMO technique to enhance coverage. First, we design an IRS-assisted THz communication framework with a low-cost sub-connected hybrid precoding architecture, including uplink data transmission and downlink data transmission. In particular, precoding errors due to the limitations of physical devices and environments are taken into consideration. Then, we derive the closed-form expressions for uplink and downlink spectral efficiencies, and reveal the impacts of system parameters. Finally, we conduct extensive simulations to verify the effectiveness of the proposed IRS-assisted THz multiuser massive MIMO technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X M, Ng D W K, Yu W, et al. Massive access for 5G and beyond. IEEE J Sel Areas Commun, 2021, 39: 615–637

    Article  Google Scholar 

  2. Ahmed N, De D, Hussain I. Internet of Things (IoT) for smart precision agriculture and farming in rural areas. IEEE Int Things J, 2018, 5: 4890–4899

    Article  Google Scholar 

  3. Qi Q, Chen X M, Zhong C J, et al. Physical layer security for massive access in cellular Internet of Things. Sci China Inf Sci, 2020, 63: 121301

    Article  Google Scholar 

  4. Han C, Wu Y Z, Chen Z, et al. Terahertz communications (TeraCom): challenges and impact on 6G wireless systems. 2019. ArXiv:1912.06040v2

  5. Zhang Z Q, Xiao Y, Ma Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag, 2019, 14: 28–41

    Article  Google Scholar 

  6. Boulogeorgos A A A, Alexiou A, Merkle T, et al. Terahertz technologies to deliver optical network quality of experience in wireless systems beyond 5G. IEEE Commun Mag, 2018, 56: 144–151

    Article  Google Scholar 

  7. Hu X L, Zhong C J, Chen X M, et al. Cell-free massive MIMO systems with low resolution ADCs. IEEE Trans Commun, 2019, 67: 6844–6857

    Article  Google Scholar 

  8. Zhao F R, Zhong C J, Chen X M, et al. Energy efficiency of massive MIMO downlink WPT with mixed-ADCs. IEEE Commun Lett, 2019, 23: 2316–2320

    Article  Google Scholar 

  9. Jia R D, Chen X M, Zhong C J, et al. Design of non-orthogonal beamspace multiple access for cellular Internet-of-Things. IEEE J Sel Top Signal Process, 2019, 13: 538–552

    Article  Google Scholar 

  10. Chen X M, Zhang Z Y, Zhong C J, et al. Exploiting multiple-antenna techniques for non-orthogonal multiple access. IEEE J Sel Areas Commun, 2017, 35: 2207–2220

    Article  Google Scholar 

  11. Rappaport T S, Xing Y C, Kanhere O, et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access, 2019, 7: 78729–78757

    Article  Google Scholar 

  12. Wang P, Li Y H, Song L Y, et al. Multi-gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks. IEEE Commun Mag, 2015, 53: 168–178

    Article  Google Scholar 

  13. Yang P, Xiao Y, Xiao M, et al. 6G wireless communications: vision and potential techniques. IEEE Netw, 2019, 33: 70–75

    Article  Google Scholar 

  14. Yuan Y F, Zhao Y J, Zong B Q, et al. Potential key technologies for 6G mobile communications. Sci China Inf Sci, 2020, 63: 183301

    Article  Google Scholar 

  15. Song H J, Nagatsuma T. Present and future of Terahertz communications. IEEE Trans Terahertz Sci Technol, 2011, 1: 256–263

    Article  Google Scholar 

  16. Jornet J M, Akyildiz I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the Terahertz band. IEEE Trans Wirel Commun, 2011, 10: 3211–3221

    Article  Google Scholar 

  17. Han C, Bicen A O, Akyildiz I F. Multi-ray channel modeling and wideband characterization for wireless communications in the Terahertz band. IEEE Trans Wirel Commun, 2015, 14: 2402–2412

    Article  Google Scholar 

  18. Afsharinejad A, Davy A, Jennings B, et al. A path-loss model incorporating shadowing for THz band propagation in vegetation. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), 2015. 1–6

  19. Ekti A R, Boyaci A, Alparslan A, et al. Statistical modeling of propagation channels for Terahertz band. In: Proceedings of IEEE Conference on Standards for Communications and Networking (CSCN), 2017. 275–280

  20. You X H, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  21. Hu X L, Wang J W, Zhong C J. Statistical CSI based design for intelligent reflecting surface assisted MISO systems. Sci China Inf Sci, 2020, 63: 222303

    Article  MathSciNet  Google Scholar 

  22. Yu G H, Chen X M, Zhong C J, et al. Design, analysis, and optimization of a large intelligent reflecting surface-aided B5G cellular Internet of Things. IEEE Int Things J, 2020, 7: 8902–8916

    Article  Google Scholar 

  23. Hu S, Rusek F, Edfors O. The potential of using large antenna arrays on intelligent surfaces. In: Proceedings of the 85th Vehicular Technology Conference (VTC Spring), 2017. 1–6

  24. Tang W K, Li X, Dai J Y, et al. Wireless communications with programmable metasurface: transceiver design and experimental results. China Commun, 2019, 16: 46–61

    Article  Google Scholar 

  25. Ning B Y, Chen Z, Chen W R, et al. Channel estimation and transmission for intelligent reflecting surface assisted THz communications. In: Proceedigs of IEEE International Conference on Communications (ICC), 2020. 1–7

  26. Li Z X, Chen Z, Ma X Y, et al. Channel estimation for intelligent reflecting surface enabled Terahertz MIMO systems: a deep learning perspective. In: Proceedigs of IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2020. 75–79

  27. Ma X Y, Chen Z, Chen W J, et al. Joint channel estimation and data rate maximization for intelligent reflecting surface assisted Terahertz MIMO communication systems. IEEE Access, 2020, 8: 99565–99581

    Article  Google Scholar 

  28. Chen W J, Ma X Y, Li Z X, et al. Sum-rate maximization for intelligent reflecting surface based Terahertz communication systems. In: Proceedigs of IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops), 2019. 153–157

  29. Qiao J P, Alouini M S. Secure transmission for intelligent reflecting surface-assisted mmwave and Terahertz systems. IEEE Wirel Commun Lett, 2020, 9: 1743–1747

    Article  Google Scholar 

  30. Hu X L, Zhong C J, Chen X M, et al. Cluster grouping and power control for angle-domain MmWave MIMO NOMA systems. IEEE J Sel Top Signal Process, 2019, 13: 1167–1180

    Article  Google Scholar 

  31. Alkhateeb A, El Ayach O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 2014, 8: 831–846

    Article  Google Scholar 

  32. Han S F, Chih-Lin I, Xu Z K, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 2015, 53: 186–194

    Article  Google Scholar 

  33. Maruthi S P, Panigrahi T, Hassan M. Improving the reliability of pulse-based Terahertz communication using intelligent reflective surface. In: Proceedigs of IEEE International Conference on Communications Workshops (ICC Workshops), 2020. 1–6

  34. Croswell W. Antenna theory, analysis, and design. IEEE Antennas Propag Soc Newsl, 1982, 24: 28–29

    Article  Google Scholar 

  35. Hur S, Kim T, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391–4403

    Article  Google Scholar 

  36. Chen X M, Zhang Z Y, Zhong C J, et al. Fully non-orthogonal communication for massive access. IEEE Trans Commun, 2018, 66: 1717–1731

    Article  Google Scholar 

  37. Björnson E, Hoydis J, Sanguinetti L. Massive MIMO networks: spectral, energy, and hardware efficiency. FNT Signal Process, 2017, 11: 154–655

    Article  Google Scholar 

  38. Chen J, Chen X M, Gerstacker W H, et al. Resource allocation for a massive MIMO relay aided secure communication. IEEE Trans Inform Forensic Secur, 2016, 11: 1700–1711

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2020YFB1805703), National Natural Science Foundation of China (Grant No. 61871344), and Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20F010002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Chen, X., Shao, X. et al. Low-cost intelligent reflecting surface aided Terahertz multiuser massive MIMO: design and analysis. Sci. China Inf. Sci. 64, 200302 (2021). https://doi.org/10.1007/s11432-021-3281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3281-7

Keywords

Navigation