Skip to main content
Log in

Optical-pulse-coding phase-sensitive OTDR with mismatched filtering

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Optical-pulse-coding (OPC) phase-sensitive optical time-domain reflectometry (Φ-OTDR) sends a train of pulses into a fiber, and has high spatial resolution decided by the duration of a subpulse while achieving signal-to-noise ratio (SNR) enhancement. OPC Φ-OTDR with a shorter measurement time is favorable. However, the scan rate, which is the reciprocal of the measurement time, is not easy to optimize. In this paper, mismatched filtering is introduced into OPC Φ-OTDR for the first time, which can reach the theoretical limit of scan rate determined by the fiber length. Also, the initial phase of each subpulse can be set arbitrarily, showing the capacity for controlling the location of interference fading. Although the design of the mismatched filter is based on the least-squares criterion, satisfactory decoding results are obtained, indicating that more advanced mismatched filter designs are worthy of further investigation to achieve higher performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernández-Ruiz M R, Soto M A, Williams E F, et al. Distributed acoustic sensing for seismic activity monitoring. APL Photon, 2020, 5: 030901

    Article  Google Scholar 

  2. Huang M F, Ji P, Wang T, et al. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. J Lightwave Technol, 2020, 38: 75–81

    Article  Google Scholar 

  3. Kowarik S, Hussels M T, Chruscicki S, et al. Fiber optic train monitoring with distributed acoustic sensing: conventional and neural network data analysis. Sensors, 2020, 20: 450

    Article  Google Scholar 

  4. Liang J J, Wang Z Y, Lu B, et al. Distributed acoustic sensing for 2D and 3D acoustic source localization. Opt Lett, 2019, 44: 1690–1693

    Article  Google Scholar 

  5. Wang Z, Yang J, Gu J, et al. Multi-source aliasing suppression for distributed fiber acoustic sensing with directionally coherent enhancement technology. Opt Lett, 2020, 45: 5672–5675

    Article  Google Scholar 

  6. Wang Y, Lv Y, Jin B, et al. Co-processing parallel computation for distributed optical fiber vibration sensing. Appl Sci, 2020, 10: 1747

    Article  Google Scholar 

  7. Muanenda Y, Oton C J, Faralli S, et al. A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR. IEEE Photon J, 2016, 8: 1–10

    Article  Google Scholar 

  8. Xiong J, Wang Z, Wu Y, et al. Long-distance distributed acoustic sensing utilizing negative frequency band. Opt Express, 2020, 28: 35844–35856

    Article  Google Scholar 

  9. Martins H F, Shi K, Thomsen B C, et al. Real time dynamic strain monitoring of optical links using the backreflection of live PSK data. Opt Express, 2016, 24: 22303–35856

    Article  Google Scholar 

  10. Shiloh L, Levanon N, Eyal A, et al. Highly-sensitive distributed dynamic strain sensing via perfect periodic coherent codes. In: Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, 2018. TuE25

  11. Mompo J J, Shiloh L, Arbel N, et al. Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver. J Lightwave Technol, 2019, 37: 4597–4602

    Article  Google Scholar 

  12. Sagues M, Piñeiro E, Cerri E, et al. Two-wavelength phase-sensitive OTDR sensor using perfect periodic correlation codes for measurement range enhancement, noise reduction and fading compensation. Opt Express, 2021, 29: 6021–6035

    Article  Google Scholar 

  13. Dorize C, Awwad E, Renaudier J. High Sensitivity φ-OTDR over long distance with polarization multiplexed codes. IEEE Photon Technol Lett, 2019, 31: 1654–1657

    Article  Google Scholar 

  14. Wang Z, Zhang B, Xiong J, et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR. IEEE Internet Things J, 2019, 6: 6117–6124

    Article  Google Scholar 

  15. Wu Y, Wang Z, Xiong J, et al. Bipolar-coding Φ-OTDR with interference fading elimination and frequency drift compensation. J Lightwave Technol, 2020, 38: 6121–6128

    Article  Google Scholar 

  16. Ackroyd M, Ghani F. Optimum mismatched filters for sidelobe suppression. IEEE Trans Aerosp Electron Syst, 1973, AES-9: 214–218

    Article  Google Scholar 

  17. Zejak A J, Zentner E, Rapajic P B. Doppler optimised mismatched filters. Electron Lett, 1991, 27: 558–560

    Article  Google Scholar 

  18. Blunt S D, Gerlach K. Adaptive pulse compression via MMSE estimation. IEEE Trans Aerosp Electron Syst, 2006, 42: 572–584

    Article  Google Scholar 

  19. de Maio A, Piezzo M, Iommelli S, et al. Design of Pareto-optimal radar receive filters. Int J Electron Telecommun, 2011, 57: 477–481

    Article  Google Scholar 

  20. Xu L L, Liu H W, Yin K Y, et al. Joint design of phase coded waveform and mismatched filter. In: Proceedings of 2015 IEEE Radar Conference, Johannesburg, 2015. 32–36

  21. Tan U, Rabaste O, Adnet C, et al. A sequence-filter joint optimization. In: Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, 2018. 2335–2339

  22. Jing Y, Liang J L, Vorobyov S A, et al. Joint design of radar transmit waveform and mismatched filter with low sidelobes. In: Proceedings of the 28th European Signal Processing Conference (EUSIPCO), Amsterdam, 2021. 1936–1940

  23. Wu Y, Wang Z, Xiong J, et al. Interference fading elimination with single rectangular pulse in Phi-OTDR. J Lightwave Technol, 2019, 37: 3381–3387

    Article  Google Scholar 

  24. Fan X, Yang G, Wang S, et al. Distributed fiber-optic vibration sensing based on phase extraction from optical reflectometry. J Lightwave Technol, 2017, 35: 3281–3288

    Article  Google Scholar 

  25. Blunt S D, Mokole E L. Overview of radar waveform diversity. IEEE Aerosp Electron Syst Mag, 2016, 31: 2–42

    Article  Google Scholar 

  26. Xiong J, Jiang J, Wu Y, et al. Chirped-pulse coherent-OTDR with predistortion. J Opt, 2018, 20: 034001

    Article  Google Scholar 

  27. Jiang J, Wang Z, Wang Z, et al. Coherent Kramers-Kronig receiver for boldsymbol Φ-OTDR. J Lightwave Technol, 2019, 37: 4799–4807

    Article  Google Scholar 

  28. Wang X, Lu B, Wang Z, et al. Interference-fading-free Φ-OTDR based on differential phase shift pulsing technology. IEEE Photon Technol Lett, 2019, 31: 39–42

    Article  Google Scholar 

  29. Zhang Y X, Zhou T, Ding Z W, et al. Classification of interference-fading suppressed Φ-OTDR signal using optimal peak-seeking and machine learning. In: Proceedings of Optoelectronic Devices and Integration IX, 2020. 6

  30. Wang Z, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt Express, 2016, 24: 853–858

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62075030, 61731006), Sichuan Provincial Project for Outstanding Young Scholars in Science and Technology (Grant No. 2020JDJQ0024), and the 111 Project (Grant No. B14039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Wang, Z., Lin, S. et al. Optical-pulse-coding phase-sensitive OTDR with mismatched filtering. Sci. China Inf. Sci. 65, 192303 (2022). https://doi.org/10.1007/s11432-021-3329-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3329-6

Keywords

Navigation