Skip to main content
Log in

Minimal observability of Boolean networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this study, the minimum observability of Boolean networks (BNs) is investigated by using the semi-tensor product (STP) of matrices. First, a new system based on the considered BN is obtained to analyze states pair dynamic trajectories, from which a necessary and sufficient condition for the observability of BNs is determined. Second, adding a new observer improves the observability without affecting the observable states. Thus, an algorithm is presented to design an observer for an unobservable BN. In addition, a necessary condition is obtained to determine the minimum number of nodes required to be directly measurable. Further, an algorithm to address the minimal observability is presented. Finally, examples are provided to demonstrate the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    Article  MathSciNet  Google Scholar 

  2. Davidson E H, Rast J P, Oliveri P, et al. A genomic regulatory network for development. Science, 2002, 295: 1669–1678

    Article  Google Scholar 

  3. Smolen P, Baxter D A, Byrne J H. Modeling transcriptional control in gene networks—methods, recent results, and future directions. Bull Math Biol, 2000, 62: 247–292

    Article  MATH  Google Scholar 

  4. Barrett C, He Q, Huang F W, et al. A Boltzmann sampler for 1-pairs with double filtration. J Comput Biol, 2019, 26: 173–192

    Article  MathSciNet  Google Scholar 

  5. Chen R X F, Bura A C, Reidys C M. D-chain tomography of networks: a new structure spectrum and an application to the SIR process. SIAM J Appl Dyn Syst, 2019, 18: 2181–2201

    Article  MathSciNet  Google Scholar 

  6. Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks: a Semi-Tensor Product Approach. New York: Springer, 2010

    Google Scholar 

  7. Cheng D, Qi H. A linear representation of dynamics of Boolean networks. IEEE Trans Automat Contr, 2010, 55: 2251–2258

    Article  MathSciNet  MATH  Google Scholar 

  8. Hochma G, Margaliot M, Fornasini E, et al. Symbolic dynamics of Boolean control networks. Automatica, 2013, 49: 2525–2530

    Article  MathSciNet  MATH  Google Scholar 

  9. Laschov D, Margaliot M, Even G. Observability of Boolean networks: a graph-theoretic approach. Automatica, 2013, 49: 2351–2362

    Article  MathSciNet  MATH  Google Scholar 

  10. Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Automat Contr, 2013, 58: 1390–1401

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang Z, Leifeld T, Zhang P. Reduced-order observer design for Boolean control networks. IEEE Trans Automat Contr, 2020, 65: 434–441

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu Y, Meng M, Feng J. Observability of Boolean networks via matrix equations. Automatica, 2020, 111: 108621

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo Y. Observability of Boolean control networks using parallel extension and set reachability. IEEE Trans Neural Netw Learn Syst, 2018, 29: 6402–6408

    Article  MathSciNet  Google Scholar 

  14. Zhu Q X, Liu Y, Lu J Q, et al. Observability of Boolean control networks. Sci China Inf Sci, 2018, 61: 092201

    Article  MathSciNet  Google Scholar 

  15. Cheng D, Li C, He F. Observability of Boolean networks via set controllability approach. Syst Control Lett, 2018, 115: 22–25

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng D, Qi H, Liu T, et al. A note on observability of Boolean control networks. Syst Control Lett, 2016, 87: 76–82

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang K, Zhang L. Observability of Boolean control networks: a unified approach based on finite automata. IEEE Trans Automat Contr, 2016, 61: 2733–2738

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin L, Cao J, Lu J, et al. Stabilizing large-scale probabilistic Boolean networks by pinning control. IEEE Trans Cybern, 2021. doi: https://doi.org/10.1109/TCYB.2021.3092374

  19. Li F F, Sun J T, Wu Q-D. Observability of Boolean control networks with state time delays. IEEE Trans Neural Netw, 2011, 22: 948–954

    Article  Google Scholar 

  20. Zhong J, Liu Y, Lu J, et al. Pinning control for stabilization of Boolean networks under knock-out perturbation. IEEE Trans Automat Contr, 2022, 67: 1550–1557

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu J, Zhong J, Ho D W C, et al. On controllability of delayed Boolean control networks. SIAM J Control Optim, 2016, 54: 475–494

    Article  MathSciNet  MATH  Google Scholar 

  22. Laschov D, Margaliot M. Minimum-time control of Boolean networks. SIAM J Control Optim, 2013, 51: 2869–2892

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang K, Zhang L, Su R. A weighted pair graph representation for reconstructibility of Boolean control networks. SIAM J Control Optim, 2016, 54: 3040–3060

    Article  MathSciNet  MATH  Google Scholar 

  24. Li F, Tang Y. Set stabilization for switched Boolean control networks. Automatica, 2017, 78: 223–230

    Article  MathSciNet  MATH  Google Scholar 

  25. Li Y, Li H, Sun W. Event-triggered control for robust set stabilization of logical control networks. Automatica, 2018, 95: 556–560

    Article  MathSciNet  Google Scholar 

  26. Li H, Ding X. A control Lyapunov function approach to feedback stabilization of logical control networks. SIAM J Control Optim, 2019, 57: 810–831

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhong J, Yu Z, Li Y, et al. State estimation for probabilistic Boolean networks via outputs observation. IEEE Trans Neural Netw Learn Syst, 2021. doi: https://doi.org/10.1109/TNNLS.2021.3059795

  28. Zhu S, Lu J, Lin L, et al. Minimum-time and minimum-triggering control for the observability of stochastic Boolean networks. IEEE Trans Automat Contr, 2022, 67: 1558–1565

    Article  MATH  Google Scholar 

  29. Fornasini E, Valcher M E. Fault detection analysis of Boolean control networks. IEEE Trans Automat Contr, 2015, 60: 2734–2739

    Article  MathSciNet  MATH  Google Scholar 

  30. Li R, Yang M, Chu T. State feedback stabilization for Boolean control networks. IEEE Trans Automat Contr, 2013, 58: 1853–1857

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu J, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE Trans Automat Contr, 2016, 61: 1658–1663

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhong J, Ho D W C, Lu J. A new approach to pinning control of Boolean networks. IEEE Trans Control Netw Syst, 2021. doi: https://doi.org/10.1109/TCNS.2021.3106453

  33. Liu Y, Cao J D, Wang L Q, et al. On pinning reachability of probabilistic Boolean control networks. Sci China Inf Sci, 2020, 63: 169201

    Article  MathSciNet  Google Scholar 

  34. Lu J Q, Li B W, Zhong J. A novel synthesis method for reliable feedback shift registers via Boolean networks. Sci China Inf Sci, 2021, 64: 152207

    Article  MathSciNet  Google Scholar 

  35. Li B W, Lu J Q. Boolean-network-based approach for construction of filter generators. Sci China Inf Sci, 2020, 63: 212206

    Article  MathSciNet  Google Scholar 

  36. Biswas D, Genest B. Minimal observability for transactional hierarchical services. In: Proceedings of International Conference on Software Engineering & Knowledge Engineering, 2018. 531–536

  37. Sarma S, Dutt N. Minimal sparse observability of complex networks: application to MPSoC sensor placement and run-time thermal estimation & tracking. In: Proceedings of Conference on Design, Automation & Test in Europe, 2014. 329

  38. Gao Z, Chen X, Basar T. Controllability of conjunctive Boolean networks with application to gene regulation. IEEE Trans Control Netw Syst, 2018, 5: 770–781

    Article  MathSciNet  MATH  Google Scholar 

  39. Gao Z, Chen X, Başar T. Stability structures of conjunctive Boolean networks. Automatica, 2018, 89: 8–20

    Article  MathSciNet  MATH  Google Scholar 

  40. Weiss E, Margaliot M, Even G. Minimal controllability of conjunctive Boolean networks is NP-complete. Automatica, 2018, 92: 56–62

    Article  MathSciNet  MATH  Google Scholar 

  41. Weiss E, Margaliot M. A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks. IEEE Trans Automat Contr, 2019, 64: 2727–2736

    Article  MathSciNet  MATH  Google Scholar 

  42. Weiss E, Margaliot M. Output selection and observer design for Boolean control networks: a sub-optimal polynomial-complexity algorithm. IEEE Control Syst Lett, 2019, 3: 210–215

    Article  MathSciNet  Google Scholar 

  43. Liu R, Qian C, Jin Y. Observability and sensor allocation for Boolean networks. In: Proceedings of 2017 American Control Conference, 2017. 3880–3885

Download references

Acknowledgements

This work was supported in part by Natural Science Foundation of Zhejiang Province of China (Grant Nos. LR20F030001, LY22F030005, LD19A010001) and National Natural Science Foundation of China (Grant Nos. 62173308, 61903339). The authors would like to thank the anonymous reviewers who helped improve the quality of this article. The authors also would like to thank Huachao LIU for his valuable suggestions on designing minimal observability of BNs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhong, J., Ho, D.W.C. et al. Minimal observability of Boolean networks. Sci. China Inf. Sci. 65, 152203 (2022). https://doi.org/10.1007/s11432-021-3365-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3365-2

Keywords

Navigation