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Hamiltonian learning is central to studying complex many-body physics and the certification of quantum de-

vices and simulators. How to learn the Hamiltonian in general with near-term quantum devices is a challenging

problem. In this paper, we develop a hybrid quantum-classical Hamiltonian learning algorithm to tackle this

problem. By transforming the Hamiltonian learning problem to an optimization problem using the Jaynes’ prin-

ciple, we employ a gradient-descent method to give the solution and could reveal the interaction coefficients

from the system’s Gibbs state measurement results. In particular, the computation of the gradients relies on

the Hamiltonian spectrum and the log-partition function. Hence, as the main subroutine, we develop a vari-

ational quantum algorithm to extract the Hamiltonian spectrum and utilize convex optimization to output the

log-partition function. We also apply the importance sampling technique to circumvent the resource require-

ments for dealing with large-scale Hamiltonians. As a proof of principle, we demonstrate the effectiveness

of our algorithm by conducting numerical experiments for randomly generated Hamiltonians and many-body

Hamiltonians of theoretical and practical interest.

I. INTRODUCTION

Hamiltonian learning is an important task in studying quantum physics systems and the experimental realization of quantum

computers. For instance, it can predict the quantum system’s locality to describe the effective interactions between particles,

which plays a crucial role in quantum technology, such as quantum lattice models [1], quantum simulation [2], and adiabatic

quantum computation [3]. Moreover, with recent experimental advances in tools for studying complex interacting quantum

systems [4], it is becoming more and more essential to learn the dynamics of complicated physical systems, which can predict

the evolution of any initial state governed by the Hamiltonian. Another critical utility is relevant to the verification of quantum

devices and simulators towards building fault-tolerant quantum computers [5] since certifying that the engineered Hamiltonian

matches the theoretically predicted models will always be an indispensable step in developing high-fidelity quantum gates [6].

Hamiltonian of many-body physics is often characterized by some parameters, which describe the interactions between the

particles. Technically, a many-body Hamiltonian is composed of polynomially many local Pauli operators, i.e.,

H =

m∑

ℓ=1

µℓEℓ, (1)

whereµ = (µ1, . . . , µm) ∈ [−1, 1]m, and {Eℓ}mℓ=1 are n-qubit local Pauli operators, withm = O(poly(n)). Despite the number

of these parameters µ in general scales polynomially in the system’s size, it is pretty challenging to learn these parameters.

Classically characterizing the system’s Hamiltonian via tomography would require resources that exponentially scale in the

system’s size [7]. Other than tomography, there are methods [8–12] that cost polynomially many resources while requiring the

ability to simulate the dynamics of the system, which is classically intractable. Moreover, it is difficult to perform quantum

simulation as a large amount of low-decoherence and fully-connected qubits are required, which are not available on NISQ

devices [13].

The major goal of this paper is to learn the many-body Hamiltonians using a trusted NISQ device. For this purpose, we

exploit the variational quantum algorithms (VQAs) that have been gaining popularity in many areas [14–23]. VQAs are a class

of hybrid quantum-classical algorithms that are expected to be implementable on NISQ devices. The main process is to optimize

a certain loss function via parameterized quantum circuits (PQCs). In particular, the loss function depending on parameters of

the circuit is evaluated on quantum devices, and then the parameters are updated using gradient-based methods classically. As

for Hamiltonian learning, we take advantage of the strategy proposed recently in [24], which allows recovering parameters µ

from the measurement results of a quantum Gibbs state ρβ = e−βH/Tr(e−βH), i.e., eℓ = Tr(ρβEℓ) for all ℓ = 1, . . . ,m. It

has been shown that solving the optimization problem below suffices to complete the Hamiltonian learning task.

µ = argmin
ν
logZβ(ν) + β

m∑

ℓ=1

νℓeℓ. (2)

Here, Zβ(ν) = Tr(e−β
∑m

ℓ=1
νℓEℓ) denotes the partition function, parameterized by ν = (ν1, ..., νm) ∈ [−1, 1]m, and β denotes

the inverse temperature of the system.

In this paper, we propose a hybrid quantum-classical algorithm to perform the Hamiltonian learning task, whose aim is to

recover the interaction coefficients µ from the measurement results {eℓ}mℓ=1. The main idea is to solve the optimization problem
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in Eq. (2) by a gradient-descent method and compute the corresponding gradients utilizing variational quantum algorithms. The

challenge of our approach is to compute the log-partition function logZβ(ν) and its gradient since computing partition function

is #P-hard [25, 26].

To overcome this challenge, we accordingly develop a method based on the relation between the log-partition function and the

system’s free energy. In general, suppose the state of the system is ρ, then the free energy is given by F (ρ) = Tr(Hρ)−β−1S(ρ),
where S(ρ) is the von Neumann entropy. The relation states that the global minimum of F (ρ) is proportional to the log-partition

function, i.e.,

logTr(e−βH) = −βmin
ρ
F (ρ). (3)

To establish the results, our method for minimizing the free energy depends on two critical steps. First, we choose a suitable PQC

with enough expressiveness and train it to learn the eigenvectors of the Hamiltonian and output the corresponding eigenvalues.

Second, we combine the post-training PQC with the classical methods for convex optimization to find the global minimum of

the free energy. Next, we utilize the post-training PQC and the optimizer of the convex optimization to compute the gradients.

Furthermore, we theoretically analyze the estimation precision of the gradients. We also show the efficiency of loss evaluation

and gradients estimation by the importance sampling technique when the underlying Hamiltonian is large.

As the proof of principle, we study the effectiveness of our algorithm for Hamiltonian learning by conducting numerical

experiments for randomly generated Hamiltonians and several many-body Hamiltonians. To generate random Hamiltonians,

we choose Pauli tensor products Eℓ from the set {X,Y, Z, I}⊗n at random, with n ranging from 3 to 5. The target interaction

coefficients are chosen via a uniform distribution over [−1, 1]. The tested many-body Hamiltonians consist of Ising, XY -spin,

and Heisenberg models, where size also varies from 3 to 5 qubits. For these Hamiltonians, we test our algorithm for different

parameters β and µ with different lengths. As a result, the numerical results show that the target interaction coefficients can be

estimated with high precision. In these experiments, our algorithm learns all eigenvalues of Hamiltonians. Moreover, we show

the effectiveness by partially learning few smallest eigenvalues of Ising Hamiltonians. In particular, the circuit depth of used

PQC could be significantly reduced. Finally, we also generalize the experiments to larger Ising Hamiltonians with 6/7 qubits.

Next, we summarize the contribution of this paper and all mentioned results above.

1. We propose a hybrid quantum-classical Hamiltonian learning framework based on the fundamental properties of free

energy, which mainly consists of the following two subroutines: log-partition function estimation and stochastic variational

quantum eigensolver (SVQE).

2. The main subroutine is the log-partition function estimation algorithm, which combines the SVQE with the classical

convex optimization to minimize the free energy.

3. We also propose a feasible scheme for learning the spectrum of the many-body Hamiltonian by integrating variational

quantum algorithms with the importance sampling technique.

4. We demonstrate our algorithm’s validity by numerical simulations on several random Hamiltonians and many-body Hamil-

tonians (e.g., Ising model, XY model, and Heisenberg model).

Organization. The remaining paper proceeds as follows. In Sec. II, we formally define the problems we studied in this

work; In Sec. III, we present the main results, including the Hamiltonian learning algorithm, and its main subroutines log-

partition function estimation, stochastic variational quantum eigensolver, and gradient estimation; In Sec. IV, we describe the

experimental settings and provide numerical results to demonstrate the efficacy of our algorithm; Lastly, we conclude the paper

in Sec. V. Proofs and more discussions are presented in the Supplementary Material.

II. PROBLEM STATEMENT

In this paper, the goal of Hamiltonian learning is to learn the interaction coefficients µ from the measurement results of a

quantum Gibbs state. We assume that the Hamiltonian to be learned H is composed of local Pauli operators {Eℓ}mℓ=1, and the

measurements corresponding to {Eℓ}mℓ=1 are performed on the Gibbs state ρβ = e−βH/Tr(e−βH) at an inverse temperature β.

The measurement results are denoted by {eℓ}mℓ=1, given by

eℓ = Tr(ρβEℓ), ∀ℓ ∈ [m]. (4)

Recently, there are many methods proposed to efficiently obtain measurement results {eℓ}mℓ=1 [27–29]. We, therefore, assume

the measurement results {eℓ}mℓ=1 have been given previously and focus on learning interaction coefficients from them. Formally,

we define the Hamiltonian learning problem (HLP) as follows:

Definition 1 (HLP) Consider a many-body Hamiltonian with a decomposition given in Eq. (1), where |µℓ| ≤ 1 for all ℓ =
1, ...,m. Suppose we are given measurement results {eℓ}mℓ=1 of the quantum Gibbs state ρβ , then the goal is to find an estimate

µ̂ of µ such that

‖ µ̂− µ ‖∞≤ ǫ, (5)
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FIG. 1: Flowchart of the gradient-descent method for Hamiltonian learning.

where ‖ · ‖∞ means the maximum norm.

To solve the HLP, we adopt a strategy that is proposed recently in Ref. [24], which transforms HLP into an optimization

problem by using the Jaynes’ principle (or maximal entropy principle) [30]. This strategy is to find a quantum state with the

maximal entropy from all states whose measurement results under {Eℓ}mℓ=1 match {eℓ}mℓ=1.

max
ρ

S(ρ) (6)

s.t. Tr(ρEℓ) = eℓ, ∀ℓ = 1, ...,m

ρ > 0, Tr(ρ) = 1.

It has been shown in [30] that the optimal state is of the following form:

σ =
exp(−β∑m

ℓ=1 µ
∗
ℓEℓ)

Tr(exp(−β
∑m

ℓ=1 µ
∗
ℓEℓ))

. (7)

Here, state σ is a quantum Gibbs state of a Hamiltonian with interaction coefficients µ∗ = (µ∗
1, ..., µ

∗
m). As a result, Ref. [24]

shows that coefficients of σ is the target interaction coefficients, i.e., µ∗ = µ. Moreover, Ref. [24] also points out an approach

for obtaining µ∗ that is to solve the dual optimization problem in Eq. (2).

To this end, we develop a gradient-descent method to solve the problem in Eq. (2). A flowchart for illustration is shown

in Figure 1. Clearly, the main obstacle is to compute the corresponding gradients of the objective function, which involves

computing the partition function. Then, we formalize the gradient estimation problem below.

Definition 2 (Gradient estimation) Given a Hamiltonian parameterized by coefficients ν, i.e., H(ν) =
∑m

ℓ=1 νℓEℓ, let L(ν)
be the objective function

L(ν) = logZβ(ν) + β
m∑

ℓ=1

νℓeℓ, (8)

where Zβ(ν) = Tr(e−βH(ν)). Then the goal is to estimate the gradient∇L(ν) with respect to ν.

The following sections are devoted to solving HLP and the Gradient estimation problem.

III. MAIN RESULTS

This section presents the main results of this paper. Specifically, we first discuss the core idea and outline the framework for

computing the log-partition function in Sec. III A. In Sec. III B, we provide a variational quantum algorithm for learning the

eigenvectors of Hamiltonians. Based on the results in Sec III A-III B, we then proceed to give the gradient estimation procedure

in Sec. III C. Last, Sec. III D provides the main algorithm, the hybrid quantum-classical Hamiltonian learning algorithm (HQHL).
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A. Log-partition function estimation

Here, we consider computing the log-partition function logZβ(ν). Motivating our method is the relationship between the log-

partition function and free energy. Recall that free energy of the system being state ρ is given by F (ρ) = Tr(H(ν)ρ)−β−1S(ρ),
assuming the parameterized Hamiltonian is H(ν) =

∑m
ℓ=1 νℓEℓ. Then the relation states that

logZβ(ν) = −βmin
ρ
F (ρ). (9)

As shown in Eq. (9), it is natural to minimize the free energy to obtain the value of logZβ(ν). However, it is infeasible to

directly minimize the free energy on NISQ devices since performing entropy estimation with even shallow circuits is difficult

[31]. To deal with this issue, we choose an alternate version of Eq. (9):

logZβ(ν) = −βmin
p

N∑

j=1

pj · λj + β−1
N∑

j=1

pj log pj , (10)

where λ = (λ1, ..., λN ) is the vector of eigenvalues ofH(ν), and p = (p1, ..., pN ) represents anN -dimensional probability dis-

tribution, withN = 2n the Hamiltonian’s dimension. Please note that proofs for Eqs. (9)-(10) are provided in the supplementary

file. Thus, optimizing the R.H.S of Eq. (10) could obtain the desired quantity and avoid the von Neumann entropy estimation

simultaneously, assuming eigenvalues of the HamiltonianH(ν) is given previously. As a result, our task is reduced to solve the

following optimization program based on the equality in Eq. (10):

min
p

C(p) (11)

s.t.

N∑

j=1

pj = 1

pj ≥ 0, ∀j = 1, . . . , N

where

C(p) =
N∑

j=1

pj · λj + β−1
N∑

j=1

pj log pj . (12)

The optimization program in Eq. (11) is a typical convex optimization program. In the context of convex optimization, there

are many classical algorithms to solve the optimization program, such as the interior-point method [32], ellipsoid method [33],

cutting-plane method [34], and random walks [35], etc. For example, we consider using the cutting plane method [36, 37],

which requires the membership and evaluation procedures [38]. Concerning the program in Eq. (11), the membership procedure

determines whether a point belongs to the set of probability distributions, and the evaluation procedure takes in a probability

distribution p and returns the value C(p) with high accuracy. Clearly, it is easy to determine whether the given point is a

probability distribution while challenging to efficiently evaluate the function value. Thus, we provide a procedure to solve the

convex optimization problem as well as overcome this challenge at the same time in Algorithm 1.

Algorithm 1 Log-partition function estimation

Require: Parameterized quantum circuit U(θ), Hamiltonian H(ν), constant β;

Ensure: An estimate for logZβ(ν);
1: # Evaluation procedure construction

2: Take probability distribution p as input;

3: Set integer T and D;

4: Sample TD integers t1
1
, ..., t1

T
, ..., tD

1
, ..., tD

T
according to p;

5: Prepare computational states |ψt1
1
〉, ..., |ψt1

T
〉, ..., |ψ

tD
1
〉, . . ., |ψ

tD
T
〉;

6: Compute approximate eigenvalues: λts
j
= 〈ψts

j
|U†(θ)H(ν)U(θ)|ψts

j
〉 for all j = 1, . . . , T and s = 1, . . . , D;

7: Compute averages: aves = 1

T

∑T
j=1

λts
j

for all s = 1, ...,D;

8: Take the median value C(p)← median(λave1 , ..., λaveD ) + β−1
∑N

j=1
pj log pj ;

9: # Membership procedure construction

10: Construct a membership procedure;

11: # Convex optimization solution

12: Compute the function’s global minimum value C(p∗) and the optimal point p∗ via the cutting plane method.

13: return value −βC(p∗) and the final point p∗.
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In Algorithm 1, we compute the log-partition function using a classical convex optimization method. For this purpose, we

first show the construction process of evaluation procedure. That is, given a point p, find an estimate for C(p). We assume we

are given a parameterized quantum circuitU(θ) that can learn eigenvectors of the HamiltonianH(ν). In our approach, the U(θ)
is combined with the importance sampling technique (cf. lines 3-8) to deal with the large-sized Hamiltonians. Specifically, i)

we sample TD indices according to the distribution p (cf. line 4); ii) we evaluate the eigenvalues associated with the sampled

indices (cf. lines 5-6); iii) we take the average over T (cf. line 7) and the median overD (cf. line 8) to evaluate the function value

C(p) with high accuracy and success probability. Eventually, with the evaluation procedure and the membership procedure, the

global minimum of C(p) could be obtained via the cutting plane method [36–38]. Finally, based on the relationship between

logZβ(ν) and C(p∗) (cf. Eq. (10)), we could derive the log-partition function value. Here p∗ denotes the optimal distribution

of the optimization in Eq. (10)).

Remark 1 Notice that a crucial gadget in Algorithm 1 is the PQC U(θ), which we have assumed to be accessible. To com-

plement the assumption, we provide a procedure for extracting eigenvalues in the next section, Stochastic variational quantum

eigensolver. In particular, we will prsent a variational quantum algorithm for learning the eigenvectors of the parameterized

Hamiltonians.

Now we discuss the cost of applying Algorithm 1. As the efficiency of Algorithm 1 mainly relies on the cost of the evaluation

procedure, we only discuss it here. Suppose we have access to Hamiltonian H(ν)’s eigenvalues λ, then the objective function

C(p) can be effectively evaluated. Recall that C(p) contains two parts
∑N

j=1 pj · λj and β−1
∑N

j=1 pj log pj . On the one hand,

the latter value can be computed immediately since p is stored on classical devices. On the other hand, value
∑N

j=1 pj · λj can

be regarded as an expectation of the probability p, where value λj is sampled with probability pj . Notably, the total cost for

estimating C(p) is dominated by the number of samples. Then we analyze the number of required samples for loss evaluation

in Proposition 1.

Proposition 1 For any constant β > 0 and parameterized Hamiltonian H(ν) =
∑m

ℓ=1 νℓEℓ with Eℓ ∈ {X,Y, Z, I}⊗n and

ν ∈ Rm, suppose we are given access to a parameterized quantum circuit U(θ) that can prepare H(ν)’s eigenvectors, then

the objective function C(p) can be computed up to precision ǫ with probability larger than 2/3 by taking T = O(m‖ν‖22/ǫ2)
samples. Furthermore, the probability can be improved to 1−η costing an additional multiplicative factor ofD = O(log(1/η)).

Sketch of Proof. In general, the expectation can be approximated by the sample mean according to Chebyshev’s inequality.

Specifically speaking, the expectation can be estimated up to precision ǫ with high probability (e.g., larger than 2/3) by taking

O(Var/ǫ2) samples, where Var denotes the variance of the distribution. Here, the number of samples is T = O(m‖ν‖22/ǫ2),
since the variance is bounded by the squared spectral norm ofH(ν), which is less than

√
m‖ν‖2. Furthermore, Chernoff bounds

allow improving success probability to 1− η at an additional cost of a multiplicative factor of D = O(log(1/η)). ⊓⊔

As shown in Proposition 1, our evaluation method is computationally efficient, since the number of samples scales polyno-

mially with the number of qubits. Hence Algorithm 1 could be applied to compute the partition function of the parameterized

Hamiltonian, given the suitable PQC U(θ).

B. Stochastic variational quantum eigensolver

This section discusses learning the eigenvectors of the parameterized Hamiltonian H(ν) using variational quantum algo-

rithms and the importance sampling technique. First, we outline the algorithm in Algorithm 2 and then discuss the fundamental

theory. Second, we circumvent the cost for coping with large-scaled Hamiltonians by the importance sampling technique. We

also analyze the cost of loss evaluation in the algorithm.

To incorporate variational quantum algorithms, we utilize the variational principle of Hamiltonian’s eigenvalues. That is,

Hamiltonian’s eigenvalues majorize the diagonal elements, and the dot function with an increasingly ordered vector is Schur

concave [40]. A similar idea has already been discussed in [41]. In contrast, our method learns the full spectrum of the

Hamiltonian. We define a function M(θ) over all parameters θ of the circuit.

M(θ) =

N∑

j=1

qj · 〈ψj |U †(θ)H(ν)U(θ)|ψj〉, (13)

where q = (q1, ..., qN ) is a probability distribution such that q1 < q2 < ... < qN , and notations |ψ1〉, . . . , |ψN 〉 denote the

computational basis. Suppose that PQC U(θ) has enough expressiveness, then U(θ)|ψj〉 could learn the j-th eigenvector of

the Hamiltonian H(ν) with suitable parameters. Particularly, M(θ) will reach the global minimum when all eigenvectors are
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Algorithm 2 Stochastic variational quantum eigensolver (SVQE)

Require: Parameterized quantum circuit U(θ), Hamiltonian H(ν), and weights q;

Ensure: Optimal PQC U(θ);
1: Set number of iterations I and l = 1;

2: Set integers T and D;

3: Set learning rate rθ ;

4: Set probability distribution q;

5: Sample TD integers k1
1

,. . .,k1T ,. . . ,kD
1

,. . .,kDT according to q;

6: Prepare computational states |ψk1
1
〉, . . . , |ψk1

T
〉, . . ., |ψ

kD
1
〉, . . ., |ψ

kD
T
〉;

7: while l ≤ I do

8: Compute value 〈ψks
j
|U†(θ)H(ν)U(θ)|ψks

j
〉 for all j = 1,. . .,T and s = 1,. . .,D;

9: Compute averages: aves = 1

T

∑T
j=1
〈ψks

j
|U†(θ)H(ν)U(θ)|ψks

j
〉 for all s = 1, ...,D;

10: Let M(θ)← median(ave1, ..., aveD);
11: Use M(θ) to compute the gradient ∇ by parameter shift rules [39];

12: Update parameters θ ← θ − rθ∇;

13: Set l← l + 1;

14: end while

15: return the final U(θ).

learned. In other words, we use the PQC U(θ) to learn eigenvectors via finding the global minimum ofM(θ) over all parameters

θ.

Remark 2 Choosing a suitable U(θ) is critical to many variational quantum algorithms as well as our Algorithm 2. With enough

expressibility, training the PQC U(θ) would allow us to exactly or approximately learn the solution to the certain problem. The

expressibility of PQCs has been recently studied in [42]. Throughout this paper, we assume the used PQC U(θ) is able to learn

well the eigenvectors of Hamiltonians H(ν) for arbitrary ν.

Remark 3 In the learning process, we employ a gradient-based method to update the parameters θ iteratively. In each iteration,

the corresponding gradients are computed via the parameter shift rule [39], which outsources the gradient estimation to the loss

evaluation. As this is similar to other variational quantum algorithms, we omit the details of gradient computation. For details

of gradient derivation, please refer to the proof of Proposition 3 in [22].

Notice that for large Hamiltonians, the loss M(θ) may consist of exponentially many terms, which would be a huge burden to

the loss evaluation. However, we could employ the importance sampling technique to circumvent this issue. To this end, M(θ)
is taken as an expectation of the distribution q. Hence, M(θ) is to be estimated by the sample mean. Notably, the cost of loss

evaluation is dominated by the number of samples, which is why we call our method stochastic variational quantum eigensolver

(SVQE). Our algorithm with importance sampling for minimizingM(θ) is depicted in Algorithm 2. In the following, we analyze

the sample complexity in the loss evaluation.

Proposition 2 Consider a Hamiltonian H(ν) =
∑m

ℓ=1 νℓEℓ with Pauli operators Eℓ ∈ {X,Y, Z, I}⊗n and constants νℓ ∈
[−1, 1]. Given any constants ǫ > 0, η ∈ (0, 1), β > 0, the objective function M(θ) in SVQE can be estimated up to precision ǫ
with probability at least 1− η, costing TD samples with T = O(m‖ν‖22/ǫ2) and D = O(log(1/η)). Besides, the total number

of measurements is given below:

O

(
mTD‖ν‖21(n+ log(m/η))

ǫ2

)
. (14)

Sketch of Proof. The number of samples is determined by the accuracy ǫ and Hamiltonian H(ν). By Chebyshev’s inequality,

estimating M(θ) up to precision ǫ with high probability requires T = O(m‖ν‖22/ǫ2) samples, since the variance is bounded

by the spectral norm, which is less than
√
m‖ν‖2. Meanwhile, the expectation value 〈ψj |U †(θ)H(ν)U(θ)|ψj〉 is evaluated by

measurements. We compute the expectation value of the observableH(ν) by measuring each Pauli operatorEℓ separately, since

there are only m = O(poly(n)) Pauli operators. ⊓⊔

Remark 4 Other methods for computing expectation value of Hamiltonians can be found in Ref. [43, 44], where importance

sampling is employed to sample Pauli operator El of the Hamiltonian.

Remark 5 In the context of quantum algorithms, there are many proposed methods for learning the low-lying eigenvectors of

the Hamiltonian and diagonalizing Hamiltonian. Some known quantum algorithms for Hamiltonian diagonalization are based
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on quantum fast Fourier transform [45], which may be too costly for NISQ computers and thus not suitable for our purpose.

Recently, there have already been some works on finding ground and excited eigenstates of the Hamiltonian with NISQ devices,

i.e., variational quantum eigensolvers [19, 22, 41, 46–50]. They maybe employed to learn eigenvectors in the Hamiltonian

learning framework.

C. Gradient estimation

Recall that we employ a gradient-based method to do the optimization in the Hamiltonian learning (cf. Figure 1). We use the

tools developed in Sec. III A-III B to derive the gradient estimation procedure.

Usually, with the estimated gradient, parameters are updated in the following way:

ν ← ν − r∇L(ν), (15)

where r is the learning rate. The expression of the gradient is given below.

∇L(ν) =
(
∂L(ν)

∂ν1
, ...,

∂L(ν)

∂νm

)
. (16)

Furthermore, the explicit formula of each partial derivative is given in [24]:

∂L(ν)

∂νℓ
=

∂

∂νℓ
logZβ(ν) + βeℓ = −β Tr(ρβ(ν)Eℓ) + βeℓ, (17)

where ρβ(ν) = e−βH(ν)/Zβ(ν) represents the Gibbs state associated with the parameterized HamiltonianH(ν).

Algorithm 3 Gradient estimation

Require: Post-training circuit U(θ), Pauli operators {Eℓ}
m
ℓ=1

, optimal p̂∗ , and constants β and {eℓ}
m
ℓ=1

;

Ensure: Gradient estimate ∇L(ν);
1: Set ℓ = 1;

2: Set integer K and D;

3: Sample K integers l1
1
, ..., l1K , ..., l

D
1
, ..., lDK , according to p̂

∗;

4: Prepare computational states |ψl1
1
〉,. . .,|ψl1

K
〉,. . .,|ψlD

1
〉,. . ., |ψlD

K
〉;

5: while ℓ ≤ m do

6: Compute value 〈ψls
j
|U†(θ)EℓU(θ)|ψls

j
〉 for j = 1, ..,K and s = 1, ...,D;

7: Calculate averages: aves = 1

K

∑K
j=1
〈ψls

j
|U†(θ)EℓU(θ)|ψls

j
〉 for all s = 1, ...,D;

8: Take the median value: sℓ = −β ·median(ave1 , . . . , aveD) + βeℓ;

9: Set ℓ← ℓ+ 1;

10: end while

11: return vector (s1, ..., sm).

According to the second equality in Eq. (17), preparing Gibbs state ρβ(ν) is likely to be necessary to the gradient estimation,

which is quite challenging [21, 51–54]. However, we provide a procedure for gradient estimation without preparing the Gibbs

state ρβ(ν) in Algorithm 3. We use the post-training PQC U(θ) and the optimal distribution p̂∗ (cf. Algorithm 1) from

Sec. III A-III B, respectively. And the component of the gradient can be computed in the sense that

∂L(ν)

∂νℓ
≈ −β

N∑

j=1

p̂∗j · 〈ψj |U †(θ)EℓU(θ)|ψj〉+ βeℓ. (18)

The validity of the relation in Eq. (18) is proved in Proposition 3.

Proposition 3 (Correctness) Consider a parameterized Hamiltonian H(ν) and its Gibbs state ρβ(ν). Suppose the U(θ) from

SVQE (cf. Algorithm 2) and p̂∗ from log-partition function estimation procedure (cf. Algorithm 1) are optimal. Define a density

operator ρ∗β as follows:

ρ∗β =

N∑

j=1

p̂∗j · U(θ) |ψj〉〈ψj |U †(θ), (19)
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Algorithm 4 Hybrid quantum-classical Hamiltonian learning algorithm (HQHL)

Require: Pauli operators {Eℓ}
m
ℓ=1

, constants {eℓ}
m
ℓ=1

, and β;

Ensure: An estimate for target coefficients ν;

1: Initialize coefficients {νℓ}
m
ℓ=1

;

2: Set number of iterations I and l = 1;

3: Set parameterized quantum circuit U(θ);
4: Set learning rate r;

5: while l ≤ I do

6: Set Hamiltonian H(ν) =
∑m

ℓ=1
νℓEℓ;

7: Train U(θ) by SVQE with H(ν);
8: Derive a probability p̂

∗ by performing log-partition function estimation with U(θ) and β;

9: Compute gradient ∇L(ν) by gradient estimation with U(θ), p̂∗, and β;

10: Update coefficients ν ← ν − r∇L(ν);
11: Set l← l + 1;

12: end while

13: return the final coefficients ν.

where {|ψ〉j} denote the computational basis. Denote the estimated eigenvalues by λ̂, where λ̂j = 〈ψj |U †(θ)H(ν)U(θ)|ψj〉
for all j = 1, . . . , N . Then, ρ∗β is an approximation of ρβ(ν) in the sense that

D(ρ∗β , ρβ(ν)) ≤
√
2βmax

{
Ep̂∗ [|λ̂− λ|],Ep∗ [|λ̂− λ|]

}
. (20)

where D(·, ·) denotes the trace distance, λ represent H(ν)’s true eigenvalues, p∗ is the distribution corresponding to λ, i.e.,

λj = e−βλj/
∑

l e
−βλl , and

Ep̂∗ [|λ̂− λ|] =
N∑

j=1

p̂∗j |λ̂j − λj |, Ep∗ [|λ̂− λ|] =
N∑

j=1

p∗j |λ̂j − λj |. (21)

Note that the quantity in Eq. (18) contains an expectation of distribution p̂∗, then the partial derivative
∂L(ν)
∂νℓ

is estimated by

the sample mean. Specifically, we first randomly select the computational basis vectors |ψj〉 complying with distribution p̂∗ and

then compute the associated eigenvalues via U(θ). The detailed procedure of sampling and estimate computation is laid out in

Algorithm 3. The number of required samples is analyzed in Proposition 4.

Proposition 4 (Sample complexity) Given ǫ > 0 and η ∈ (0, 1), Algorithm 3 can compute an estimate for the gradient∇L(ν)
up to precision ǫ with probability larger than 1− η. Particularly, the overall number of samples is KD = O(β2 log(2m/η)/ǫ2)
with K = O(β2/ǫ2) andD = O(log(2m/η)). Besides, the total number of measurements is O(KD ·mβ2(n+log(m/η))/ǫ2).

The proofs for Propositions 3-4 are deferred to the supplementary file.

To validate the gradient estimation, we show that the average of the overall errors determines the accuracy of the gradient

estimation. For this purpose, Proposition 3 shows that matrix ρ∗β is an approximation of the desired density matrix ρβ(ν).

Specifically, the trance distance between ρ∗β and ρβ(ν) is dependent on the averaged errors Ep̂∗ [|λ̂ − λ|] and Ep∗ [|λ̂ − λ|].
Here, notation |λ̂ − λ| denotes the difference between estimated eigenvalue and the associated real eigenvalue. p̂∗ and p∗

are probability distributions, corresponding to λ̂ and λ, respectively. In particular, it implies that learning several low-lying

eigenvectors with high accuracy may lead to a high-precision estimate of the gradient. We numerically verify this feature in

Sec. IV C.

Moreover, Proposition 4 shows the feasibility of our approach as the number of measurements scales polynomially in param-

eters n, 1/ǫ, and β.

D. Hamiltonian learning algorithm

Eventually, we present our hybrid quantum-classical algorithm for Hamiltonian learning (HQHL) in Algorithm 4. The main

idea of HQHL is to find the target interaction coefficients by a gradient-descent method (cf. Figure 1). Thus, HQHL’s main

process is to compute the gradient of the objective function. Specifically, we take Pauli operators {Eℓ}mℓ=1, {eℓ}mℓ=1, and β as

input. Then we initialize the coefficients by choosing ν from [−1, 1]m uniformly at random. Next, we compute the gradient
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of the objective function L(ν) by Algorithm 3. Then update the coefficients by choosing a suitable learning rate r and using

the estimated gradient. In consequence, after repeating the training process sufficiently many times, the final coefficients are

supposed to approximate the target coefficients ν.

Notably, the learning process is in the “while” loop of HQHL. In the loop, the subroutine SVQE (cf. Sec. III B) is first

called to learn Hamiltonian’s eigenvectors and eigenvalues. Here, we choose a suitable parameterized quantum circuit U(θ)
and train it to prepare the eigenvectors of the Hamiltonian H(ν). Afterwards, we enter the process of the log-partition function

estimation (cf. Sec. III A). It first exploits the U(θ) to output the estimated eigenvalues of the parameterized HamiltonianH(ν)
and then computes the objective function L(ν). We would obtain a probability distribution p̂∗ that consists of eigenvalues of

the associated Gibbs state ρβ(ν) = e−βH(ν)/Zβ(ν). Lastly, we exploit the resultant results (post-training circuit U(θ) and

distribution p̂∗) to compute the gradients following the procedure in Algorithm 3 and update the coefficient ν accordingly (cf.

Eq. (15)).

IV. NUMERICAL RESULTS

In this section, we conduct numerical experiments to verify the correctness of our algorithm. Specifically, we consider recover-

ing interactions coefficients of several Hamiltonians, including randomly generated Hamiltonians and many-body Hamiltonians.

To ensure the performance of the algorithm, we choose a PQC (shown in Fig. 2) and set the circuit with enough expressibil-

ity. When testing our algorithm, we first use SVQE to learn the full spectrum of Hamiltonians, where size of the Hamiltonian

varies from 3 to 5. In SVQE, weights q consists of a normalized sequence of arithmetic sequence. For instance, when n = 3,

q = (1, 2, 3, . . . , 8)/S3, where S3 =
∑8

l=1 l. Furthermore, in order to reduce quantum resources, we also partially learn the

few smallest eigenvalues of the selected Ising models and derive estimates for coefficients up to precision 0.05. With fewer

eigenvalues to be learned, the depth of the used PQC is significantly reduced.

Rz(θ0,0,0) Ry(θ0,0,1) Rz(θ0,0,2) • Rz(θ1,0,0) Ry(θ1,0,1) Rz(θ1,0,2) · · ·

Rz(θ0,1,0) Ry(θ0,1,1) Rz(θ0,1,2) • Rz(θ1,1,0) Ry(θ1,1,1) Rz(θ1,1,2) · · ·

Rz(θ0,2,0) Ry(θ0,2,1) Rz(θ0,2,2) • Rz(θ1,2,0) Ry(θ1,2,1) Rz(θ1,2,2) · · ·

Rz(θ0,3,0) Ry(θ0,3,1) Rz(θ0,3,2) • Rz(θ1,3,0) Ry(θ1,3,1) Rz(θ1,3,2) · · ·

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴×D

FIG. 2: The selected quantum circuit U(θ) for stochastic variational quantum eigensolver (SVQE). Here, D represents circuit depth. Parame-

ters θ are randomly initialized from a uniform distribution in [0, 2π] and updated via gradient descent method.

A. Random Hamiltonian models

This section shows the effectiveness of our algorithm with random Hamiltonians from three aspects: different β, different

numbers of µ (# µ) and a different number of qubits (# qubits).

In the experimental setting, we randomly choose Pauli tensor productsEℓ from {X,Y, Z, I}⊗n and target coefficients µ by a

uniform distribution over [−1, 1]. Specifically, we first vary the values of β by fixing the number of µ and the number of qubits

to explore our method’s sensitivity to temperature. We similarly vary the number of µ and the number of qubits by fixing other

hyper-parameters to explore our method’s scalability. The actual values of these hyper-parameters sampled/chosen in each trial

are concluded in Table I. In addition, the deep, D, of the PQC U(θ) is set according to the size of Hamiltonian. As number of

qubits ranges from n = 3 to n = 5, the depth D is set to be 10, 20, 40, respectively.

In Table I, Hamioltonian is represented by a tuple. Each number 0, 1, 2, 3 corresponds to matrices I,X, Y, Z , respectively. µ

denotes the interaction coefficients to be learned. For instance, [[0 2 1] [2 1 3] [0 3 3]] means that the Hamiltonian consists of

three Pauli operators, where each term represents a Pauli operator, e.g., [0 2 1] means I ⊗ Y ⊗X . Then, the parameters in the

top second row represents the following Hamiltonian.

0.3408I ⊗ Y ⊗X − 0.6384Y ⊗X ⊗ Z − 0.4988I ⊗ Z ⊗ Z. (22)

Other Hamiltonians to be tested are represented in a similar fashion.

The results for these three aspects are illustrated in Fig. 3. We find that all curves converge to the values close to 0 in less

than ten iterations, which shows our method is effective. In particular, our method works for different β means that it is robust

to temperature. And the results for the different number of µ and qubits reveals our method’s scalability to a certain extent.
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Three aspects # qubits # µ β LR µ El

3 3 1 1.0 [ 0.3408 -0.6384 -0.4988] [[0 2 1] [2 1 3] [0 3 3]]

Vary β 3 3
0.3 8.0 [-0.4966 -0.8575 -0.7902] [[1 0 0] [3 0 2] [3 1 3]]

3 0.1 [0.5717 -0.1313 0.2053] [[1 0 0] [3 3 3] [0 2 3]]

Vary # µ 3

4

1 1.0

[-0.7205 -0.3676 -0.7583 -0.3002] [[3 2 1] [2 1 3] [0 0 2] [2 0 0]]

5 [-0.5254 -0.1481 -0.0037 -0.4373 0.7326] [[1 3 0] [2 1 1] [3 3 2] [2 3 1] [0 2 0]]

6
[-0.5992 0.7912 0.5307 [[3 2 2] [0 2 1] [1 2 1]

-0.5422 -0.9239 0.0354] [2 2 0] [0 1 2] [3 2 1]]

Vary # qubits
4

3 1 1.0
[ 0.0858 0.3748 -0.1007] [[0 2 0 1] [1 0 0 1] [2 0 1 0]]

5 [-0.0411 0.7882 0.6207] [[2 2 2 1 2] [2 3 3 2 1] [1 2 0 2 3]]

TABLE I: Hyper-parameters setting. The number of qubits (# qubits) varies from 3 to 5, and the number of µ (# µ) from 3 to 6. β is chosen as

0.3, 1, 3. “LR” denotes learning rate. The values of µ are sampled uniformly in the range of [-1, 1]. The term, likes “[[0 2 1] [2 1 3] [0 3 3]]”,

indicates there are three El’s and each has three qubits with the corresponding Pauli tensor product. Here “0,1,2,3” represent “I,X, Y, Z”

respectively. For example, for the first sample, the corresponding Hamiltonian is taken as H=0.3408 ·I⊗Y ⊗X -0.6384 ·Y ⊗X⊗Z -0.4988

·I ⊗ Z ⊗ Z.
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FIG. 3: The curves in (a), (b), (c) represent the infinity norm of the error of µ with different β, different number of µ, and different number

of qubits, respectively. In (d), (e), (f), the curves represent the infinity norm of the error of µ for different many-body Hamiltonians with the

number of qubits varies from 3 to 5. The numbers on the line represent the values of the last iteration. These numbers close to 0 indicate that

our algorithm is effective.

B. Quantum many-body models

Here, we demonstrate the performance of our algorithm for quantum many-body models. Specifically, we consider the one-

dimensional nearest-neighbor Ising model, XY model, and Heisenberg model. These many-body models are described by the

Hamiltonians shown below:

(Ising model) H0 = J0

n∑

l=1

Z lZ l+1 + h0

n∑

l=1

X l, (23)

(XY model) H1 = J1

n∑

l=1

(X lX l+1 + Y lY l+1), (24)

(Heisenberg model) H2 = J2

n∑

l=1

(X lX l+1 + Y lY l+1 + Z lZ l+1) + h2

n∑

l=1

Z l, (25)
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Many-body # qubits # µ β LR µ

models

Ising model

3 6

1.0

2.0 [J0 = 0.1981, h0 = 0.7544]
4 8 1.0 [J0 = 0.5296, h0 = 0.4996]
5 10 0.5 [J0 = −0.6916, h0 = 0.4801]

XY model

3 6

1.0

1.0 J1 = −0.0839
4 8 1.0 J1 = 0.2883
5 10 0.6 J1 = −0.7773

Heisenberg

3 12

1.0

1.0 [J2 = 0.0346, h2 = 0.8939]
4 16 1.0 [J2 = −0.5831, h2 = −0.0366]
5 20 1.0 [J2 = 0.2883, h2 = −0.2385]

TABLE II: Hyper-parameters setting for many-body models. For each Hamiltonian model, the number of qubits varies from 3 to 5, and the

number of µ is determined by the number of Pauli operators. “LR” denotes learning rate. The values of µ are sampled uniformly in the range

of [−1, 1].

where periodic boundary conditions are assumed (i.e., Xn+1 = X1, Y n+1 = Y 1, and Zn+1 = Z1). Coefficient J is the

coupling constant for the nearest neighbor interaction, and h represents the external transverse magnetic field. The experimental

parameters are concluded in Table II.

We consider the models with a different number of qubits, varying from n = 3 to n = 5. The inverse temperature is set as

β = 1. The coefficients J0, J1, J2 and h0, h2 are sampled uniformly from a uniform distribution on [-1,1]. We also employ the

parameterized quantum circuit U(θ) in Fig. 2 for the SVQE. And the depth of U(θ) is also set as D = 10, 20, 40 for different

n. Moreover, the numerical results are shown in Fig. 3, which imply our method is applicable to recover quantum many-body

Hamiltonians.

C. Numerical results using fewer eigenvalues of Ising Hamiltonians

Notice that we use a PQC U(θ) with deep depths to learn the full spectrum of small-sized Hamiltonians in Secs. IV A-IV B,

which may be beyond the capacity of NISQ devices. However, this section demonstrates the efficacy of HQHL in learning the

Ising Hamiltonians using a circuit with reduced depth, where few eigenvalues (instead of the full spectrum) are learned. In par-

ticular, only halved circuit depths are needed for Hamiltonians with 3-5 qubits, given in Table II. Furthermore, the performance

on n = 6 and n = 7-qubit Ising models, given below, is tested as well. The presented results imply the potential efficacy of our

approach for larger Hamiltonians.

H = 0.1981

n∑

l=1

Z lZ l+1 + 0.7544

n∑

l=1

X l. (26)

# qubits n weights q # µ depth D LR #λ

3 (0.1, 0.2, 0.3, 0.4, 0, . . .)8 6 5 0.4 4

4 (0.1, 0.15, 0.2, 0.25, 0.3, 0, . . .)16 8 10 0.55 5

5 (0.1, 0.15, 0.2, 0.25, 0.3, 0, . . .)32 10 20 0.7 5

6 (1/21, 2/21, 3/21, 4/21, 5/21, 6/21, 0, . . .)64 12 30 0.55 6

7 (1/21, 2/21, 3/21, 4/21, 5/21, 6/21, 0, . . .)128 14 40 0.6 6

TABLE III: Parameters setting for HQHL. The script index means the length of the tuple, e.g., ()8 indicates the tuple consists of 8 entries. The

notation 0, . . . means the entries following 0 are all zeros as well. Notation #λ means the number of eigenvalues we learned. Please note that

we omit the β = 1 in the table.

To reduce the number of eigenvalues to be learned, we tune the weights q of the SVQE such that the U(θ) can output several

smallest eigenvalues. For instance, five eigenvalues are learned for 4 & 5-qubit Ising Hamiltonians, and four eigenvalues are

learned for 3-qubit Ising Hamiltonians. As a result, the circuit depth of the used U(θ) is significantly reduced. For example,

we only use depth D = 20 to learn the coefficients with precision 0.05 for 5-qubit Ising models. While, in Sec. IV B, we use

the depth D = 40. Moreover, we find out that using a circuit with 35 depths suffices to learn well the 6-qubit Ising model,

where SVQE only learns six eigenvalues. Using the circuit with 40 depths could also reach a precision of 0.05 for the 7-qubit

Ising Hamiltonian. The details of parameters setting (weights, depth, learning rate, etc.) are given in Table III. Besides, the

experimental results are depicted in Figure 4.
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FIG. 4: Experimental results by using fewer eigenvalues. Each line corresponds to the results by running HQHL with Ising Hamiltonians of

different sizes. Results show that using halved circuit depth, compared to the setting in Sec. IV B, could learn coefficients up to precision 0.05
for different sized Ising models and a different number of µ.

V. CONCLUSION

We have proposed a hybrid quantum-classical Hamiltonian learning algorithm that employs a gradient-descent method to find

the desired interaction coefficients. We achieve this purpose by unifying the variational quantum algorithms (VQAs) with the

strategy proposed in [24]. To this end, we develop several subroutines: log-partition function estimation, stochastic variational

quantum eigensolver (SVQE), and gradient estimation. In SVQE, we propose a method to learn the full/partial spectrum of the

Hamiltonian and use the importance sampling to circumvent the resources in the loss evaluation. In the log-partition function,

we propose a method that combines the parameterized quantum circuits and convex optimization to find the global minimum

of the free energy as well as compute the log-partition function. In gradient estimation, we present a procedure to compute

the gradient of the objective function costing polynomially many resources. Finally, we conduct numerical experiments to

demonstrate the effectiveness of our approach with randomly generated Hamiltonians and selected many-body Hamiltonians.

In consequence, we show that learning the full spectrum of Hamiltonians in the learning process could produce high-precision

estimates of the desired interaction coefficients. Moreover, we also show that partially learning several smallest eigenvalues of

Ising Hamiltonians could derive estimates up to a precision of 0.05. Overall, this paper develops a concrete near-term quantum

algorithm for Hamiltonian learning and demonstrates the effectiveness as well, which has potential applications in quantum

device certification, quantum simulation, and quantum machine learning.

We believe our approach would shed lights on near-term quantum applications. For example, SVQE might enrich the VQE

family in the fields of molecules and materials. Moreover, as many problems in computer science can be framed as partition

function problems (e.g., counting coloring), our method may contribute to these fields as well. Furthermore, it is reasonable to

explore our algorithm’s applications in quantum machine learning [55], quantum error correction [6], and tomography [56].
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J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu,

E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J.

http://dx.doi.org/10.1103/PhysRevA.65.042101
http://arxiv.org/abs/0104114
http://www.jstor.org/stable/2899535
http://dx.doi.org/ 10.1137/080734479
http://arxiv.org/abs/0405098


13

Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature

574, 505 (2019).

[5] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010), arXiv:arXiv:1009.2267v1 .

[6] A. Valenti, E. van Nieuwenburg, S. Huber, and E. Greplova, Physical Review Research 1, 033092 (2019), arXiv:1907.02540 .

[7] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Physical review letters 105, 150401 (2010).

[8] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, New Journal of Physics 14, 103013 (2012), arXiv:1207.1655 .

[9] N. Wiebe, C. Granade, C. Ferrie, and D. G. Cory, Physical Review Letters 112, 190501 (2014), arXiv:1309.0876 .

[10] N. Wiebe, C. Granade, C. Ferrie, and D. Cory, Physical Review A - Atomic, Molecular, and Optical Physics 89, 1 (2014),

arXiv:1311.5269 .

[11] N. Wiebe, C. Granade, and D. G. Cory, New Journal of Physics 17, 022005 (2015), arXiv:1409.1524 .

[12] J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’brien, J. G. Rarity, A. Laing, and M. G.

Thompson, Nature Physics 13, 551 (2017), arXiv:1703.05402 .

[13] J. Preskill, Quantum 2, 79 (2018), arXiv:1801.00862 .

[14] X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, arXiv preprint arXiv:1909.03898 (2019).

[15] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, arXiv preprint arXiv:1909.05820 (2019).

[16] H.-Y. Huang, K. Bharti, and P. Rebentrost, arXiv preprint arXiv:1909.07344 (2019).
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Appendix A: Proofs for Eqs. (9)-(10)

Consider a Hamiltonian H ∈ C
N×N and a constant β > 0, then the system’s free energy is given by F (ρ) = Tr(Hρ) −

β−1S(ρ). Recall the fact [57] that

S(ρ) ≤ −
N∑

j=1

ρjj log ρjj , (S1)

where ρjj are the diagonal elements of quantum state ρ. Using this fact, for any state ρ, we can find a lower bound on free energy

in the sense that

F (ρ) ≥ Tr(Hρ) + β−1
N∑

j=1

ρjj log ρjj . (S2)

On the other hand, let U be a unitary such that H = UΛU †, where Λ = diag(λ1, ..., λN ) is a diagonal matrix. Let ρ̃ =
diag(ρ11, ..., ρNN ) be the diagonal matrix consisting of ρ’s diagonal elements and let σ = U †ρ̃U . It is easy to verify that

Tr(Hρ) = Tr(Λσ). Furthermore, taking this relation into Eq. (S2)’s right hand side, we can find that

F (ρ) ≥ Tr(Λσ)− β−1S(σ). (S3)

Notice that Eq. (S3)’s right-hand side is equal to F (ρ̃), then we have

F (ρ) ≥ F (ρ̃). (S4)

The inequality in Eq. (S4) shows that free energy’s global optimum is commuting with the Hamiltonian H .

According to the above discussion, we can rewrite the optimization program of finding free energy’s minimal value as follows

min
ρ
F (ρ) = min

p

N∑

j=1

λjpj + β−1
N∑

j=1

pj log pj , (S5)

where p represents an arbitrary probability distribution. Eq. (S5)’s right-hand side can be solved using the Lagrange multiplier

method, and the optimum is given below:

p∗ :=
1

Z
(e−βλ1 , ..., e−βλN ), (S6)

with Z :=
∑N

j=1 e
−βλj .

Finally, the equalities in Eqs. (9)-(10) can be proved by taking p∗ into Eq. (S5)’s right-hand side and computing the minimal

value.

Appendix B: Proof for Proposition 1

Lemma 5 For any parameterized HamiltonianH(ν) =
∑m

ℓ=1 νℓEℓ with Eℓ ∈ {X,Y, Z, I}⊗n, we have

‖ H(ν) ‖≤
√
m· ‖ ν ‖2 . (S1)

where ‖ · ‖ denotes the spectral norm and ‖ · ‖2 is the ℓ2-norm.

Proof Let U be the unitary that diagonalizes the HamiltonianH(ν), and then we can use the following form to representH(ν).

H(ν) =

N∑

j=1

λj · U |ψj〉〈ψj |U †, (S2)

where |ψ1〉, ..., |ψN 〉 are the computational basis.

Typically, each eigenvalue is represented as follows:

λj = 〈ψj |U †H(ν)U |ψj〉 (S3)
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=

m∑

ℓ=1

νℓ〈ψj |U †EℓU |ψj〉 (S4)

Then, applying the Cauchy-Schwarz inequality leads to an upper bound on each eigenvalue:

(λj)
2 ≤

m∑

ℓ=1

(νℓ)
2 ·

m∑

ℓ=1

(〈ψj |U †EℓU |ψj〉)2. (S5)

Meanwhile, recalling that all Eℓ are Pauli matrix tensor product, we can obtain an upper bound below:

(λj)
2 ≤ m

m∑

ℓ=1

(νℓ)
2. (S6)

Ranging j in {1, ..., N} in Eq. (S6), the maximal eigenvalue is upper bounded by
√
m‖ν‖2, validating the claim. �

Proposition 1 For any parameterized Hamiltonian H(ν) =
∑m

ℓ=1 νℓEℓ with Eℓ ∈ {X,Y, Z, I}⊗n and ν ∈ Rm and constant

β > 0, suppose we are given access to a parameterized quantum circuit U(θ) that can learn H(ν)’s eigenvectors, then the

objective function C(p) can be computed up to precision ǫ with probability larger than 2/3 by taking T = O(m‖ν‖22/ǫ2)
samples. Furthermore, the probability can be improved to 1− η costing an additional multiplicative factor of O(log(1/η)).

Proof Since the expression
∑N

j=1 pjλj is regarded as an expectation, then we can estimate it by the sample mean with high

accuracy and probability. To be specific, let X denote a random variable that takes value λj with probability pj . Then, this

expression can be written as

E[X ] =

N∑

j=1

pjλj . (S7)

Furthermore, recall Chebyshev’s inequality, then we have

Pr
(
|X̄ −E[X ]| ≤ ǫ

)
≥ 1− Var[X ]

T ǫ2
. (S8)

where X̄ = 1
T
(X1+X2+ ...+XT ) and Var[X ] is the variance ofX . Technically, we can set large T to increase the probability.

Here, we only need to choose T such that

Var[X ]

T ǫ2
=

2

3
. (S9)

Note that the second moment E[X2] bounds the variance Var[X ]. Meanwhile, the second moment of X is bounded by the

squared spectral norm of H , shown below.

E[X2] =

N∑

j=1

pj(λj)
2 (S10)

≤
N∑

j=1

pj‖H(ν)‖2 (S11)

= ‖H(ν)‖2. (S12)

The inequality is due to the fact that each eigenvalue is less than the spectral norm. Apply Lemma 5, then we will obtain an

bound on T :

T =
3Var[X ]

2ǫ2
≤ 3E[X2]

2ǫ2
≤ 3m‖ν‖22

2ǫ2
. (S13)

Lastly, according to the Chernoff bound, we can boost the probability to 1 − η for any η > 0 by repeatedly computing the

sample mean O(log(1/η)) times and taking the median of all sample means. �



16

Appendix C: Proof for Proposition 2

Lemma 1 Consider a parameterized HamiltonianH(ν) =
∑m

ℓ=1 νℓEℓ with Eℓ ∈ {X,Y, Z, I}⊗n. For any unitary U and state

|ψ〉, estimating the value 〈ψ|U †H(ν)U |ψ〉 up to precision ǫ with probability at least 1− η requires a sample complexity of

O

(
m‖ν‖21 log(m/η)

ǫ2

)
. (S1)

Proof First, we rewrite the value 〈ψ|U †H(ν)U |ψ〉 as follows:

〈ψ|U †H(ν)U |ψ〉 =
m∑

ℓ=1

νℓ〈ψ|U †EℓU |ψ〉. (S2)

Second, we count the required number of measurements to estimate the value 〈ψ|U †EℓU |ψ〉 up to precision ǫ/‖ν‖1 with

probability at least 1 − η/m, where ‖ · ‖1 denotes the ℓ1-norm. Since the Pauli operator, Eℓ, has eigenvalues ±1, we can

partition Eℓ’s eigenvectors into two sets, corresponding to positive and negative eigenvalues, respectively. For convenience, we

call the measurement outcome corresponding to eigenvalue 1 as the positive measurement outcome and the rest as the negative

measurement outcome. We define a random variable X in the sense that

X =

{
1, Pr [Positive measurement outcome]
−1, Pr [Negative measurement outcome]

(S3)

It is easy to verify that E[X ] = 〈ψ|U †EℓU |ψ〉. Thus, an approach to compute value 〈ψ|U †EℓU |ψ〉 is computing an estimate for

the expectation E[X ]. Meanwhile, consider that E[X2] ≤ 1, then the required number of samples is O(‖ν‖21 log(m/η)/ǫ2).
Lastly, for 〈ψ|U †H(ν)U |ψ〉, the estimate’s maximal error is ‖ν‖1·ǫ/‖ν‖1 = ǫ. By union bound, the overall failure probability

is less than m · η/m = η. Thus, the claim is proved. �

Proposition 2 Consider a parameterized Hamiltonian H(ν) =
∑m

ℓ=1 νℓEℓ with Pauli operators Eℓ ∈ {X,Y, Z, I}⊗n and

constants νℓ ∈ [−1, 1]. Given any constants ǫ > 0, η ∈ (0, 1), β > 0, the objective function M(θ) in SVQE can be estimated

up to precision ǫ with probability at least 1− η, costing TD samples with T = O(m‖ν‖22/ǫ2) and D = O(log(1/η)). Besides,

the total number of measurements is given below:

O

(
mTD‖ν‖21(n+ log(m/η))

ǫ2

)
. (S4)

Proof Let Y denote a random variable that takes value 〈ψj |U †(θ)H(ν)U(θ)|ψj〉with probability qj , then the objective function

M(θ) can be rewritten as

E[Y ] =M(θ). (S5)

By Chebyshev’s inequality, the expectation can be computed by taking enough samples of Y and averaging them. Note that

the variance of Y determines the number of samples, and the absolute value Y is less than the spectral norm ‖H(ν)‖, i.e.,

|Y | ≤ ‖H(ν)‖. Along with Lemma 5, it is easy to see that the required number of Y ’s samples for obtaining an estimate

with error ǫ/2 and probability larger than 2/3 is T = O(m‖ν‖22/ǫ2). Furthermore, by Chernoff bounds, the probability can be

improved to 1− η/2 at an additional cost of multiplicative factor of D = O(log(1/η)).
On the other hand, each sample Y ’s value has to be determined by performing the measurement. Since |ψj〉 is a computational

basis, hence Y can take at most 2n different values. To ensure the probability for estimating E[Y ] larger than 1−η, the probability

of each estimate 〈ψj |U †(θ)H(ν)U(θ)|ψj〉 only needs to be at least 1− η/2n+1. By union bound, the overall failure probability

is at most η/2 + η · TD
2n+1 < η (For large Hamiltonians, the number of samples TD can be significantly less than dimension 2n).

Besides, according to Lemma 1, 〈ψj |U †(θ)H(ν)U(θ)|ψj〉’s estimate within accuracy ǫ/2 and probability 1−η/2n+1 requires a

sample complexity ofO(m‖ν‖21(n+log(m/η))/ǫ2). Thus, the overall number of measurements is the product of the number of

samples TD = O(m‖ν‖22 log(1/η)/ǫ2) and each sample’s sample complexity O(m‖ν‖21(n+ log(m/η))/ǫ2). In other words,

the objective functionM(θ)’s estimate within error ǫ and probability 1− η requires a sample complexity of

O

(
TD · m‖ν‖

2
1(n+ log(m/η))

ǫ2

)
= O

(
m2‖ν‖21‖ν‖22 log(1/η)(n+ log(m/η))

ǫ4

)
.

�
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Appendix D: Proof for Proposition 3

Lemma 2 Let λ̂ = (λ̂1, ..., λ̂N ) denote the estimated eigenvalues from SVQE and define a function G(p) as follows:

G(p) :=

N∑

j=1

pj λ̂j + β−1
N∑

j=1

pj log pj . (S1)

Let p̂∗ be the global optimal point of G(p), that is, for any probability distribution p, we have G(p̂∗) ≤ G(p). Meanwhile,

suppose p∗ is the global optimal point of C(p). Then, we have

|G(p̂∗)− C(p∗)| ≤ max
{
Ep̂∗ [|λ̂− λ|],Ep∗ [|λ̂− λ|]

}
, (S2)

where

Ep̂∗ [|λ̂− λ|] =
N∑

j=1

p̂∗j |λ̂j − λj |, (S3)

Ep∗ [|λ̂− λ|] =
N∑

j=1

p∗j |λ̂j − λj |. (S4)

Proof Since functionsC(p) and G(p) reach their global minimums at points p∗ and p̂∗ respectively, then we have

C(p̂∗) ≥ C(p∗), (S5)

G(p̂∗) ≤ G(p∗). (S6)

Besides, we also have another relation:

|C(p)−G(p)| =
N∑

j=1

pj|(λ̂j − λj)|, (S7)

where ‖ · ‖∞ denotes the maximum norm.

Combining the above inequalities, we have the following result:

C(p∗) ≤ C(p̂∗) ≤ G(p̂∗) +Ep̂∗ [|λ̂− λ|] ≤ G(p∗) +Ep̂∗ [|λ̂− λ|] ≤ C(p∗) +Ep̂∗ [|λ̂− λ|] +Ep∗ [|λ̂− λ|]. (S8)

Then the inequality in Eq. (S2) is proved. �

Proposition 3 (Correctness) Consider a parameterized Hamiltonian H(ν) and its Gibbs state ρβ(ν). Suppose the U(θ) from

SVQE (cf. Algorithm 2) and p̂∗ from log-partition function estimation procedure (cf. Algorithm 1) are optimal. Define a density

operator ρ∗β as follows:

ρ∗β :=

N∑

j=1

p̂∗j · U(θ) |ψj〉〈ψj |U †(θ). (S9)

where {|ψ〉j} denote the computational basis. Denote the estimated eigenvalues by λ̂, where λ̂j = 〈ψj |U †(θ)H(ν)U(θ)|ψj〉.
Then, ρ∗β is an approximate of ρβ(ν) in the sense that

D(ρ∗β , ρβ(ν)) ≤
√
2βmax

{
Ep̂∗ [|λ̂− λ|],Ep∗ [|λ̂− λ|]

}
. (S10)

where D(·, ·) denotes the trace distance, λ represent H(ν)’s true eigenvalues.

Proof Recalling the expressions of C(p∗) and G(p̂∗) in Eqs. (12)-(S1), it is easy to verify the following inequalities:

F (ρβ(ν)) = C(p∗), (S11)

F (ρ∗β) = G(p̂∗). (S12)
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where F denotes the free energy, i.e., F (ρ) = Tr(Hρ)− β−1S(ρ).
Using the result in Lemma 2, we will obtain the following inequality.

|F (ρ∗β)− F (ρβ(ν))| = |G(p̂∗)− C(p∗)| ≤ max
{
Ep̂∗ [|λ̂− λ|],Ep∗ [|λ̂− λ|]

}
. (S13)

In the meanwhile, a property of the free energy says that

F (ρ∗β) = F (ρβ(ν)) + β−1S(ρ∗β‖ρβ(ν)). (S14)

where S(ρ∗β‖ρβ(ν)) is the relative entropy. Rewriting the above equation as follows:

F (ρ∗β)− F (ρβ(ν)) = β−1S(ρ∗β‖ρβ(ν)). (S15)

Combining the relations in Eqs. (S13) and (S15), we obtain the following inequality:

S(ρ∗β‖ρβ(ν)) ≤ βmax
{
Ep̂∗ [|λ̂− λ|],Ep∗ [|λ̂− λ|]

}
. (S16)

Lastly, according to Pinsker’s inequality, the above inequality immediately leads to a bound on the trace distance between ρβ
and ρ∗β in the sense that

D(ρ∗β , ρβ(ν)) ≤
√
2S(ρ∗β‖ρβ(ν)) ≤

√
2βmax

{
Ep̂∗ [|λ̂− λ|],Ep∗ [|λ̂− λ|]

}
. (S17)

The the claimed is proved. �

Appendix E: Proof for Proposition 4

Proposition 4 (Sample complexity) Given ǫ > 0 and η ∈ (0, 1), Algorithm 3 can compute an estimate for the gradient∇L(ν)
up to precision ǫ with probability larger than 1− η. Particularly, the overall number of samples is KD = O(β2 log(m/η)/ǫ2)
with K = O(β2/ǫ2) andD = O(log(2m/η)). Besides, the total number of measurements is O(KD ·mβ2(n+log(m/η))/ǫ2).

Proof Let Zℓ denote the random variable that takes value 〈ψj |U †(θ)EℓU(θ)|ψj〉 with probability p̂∗j , for all ℓ = 1, ...,m. Then

we have

E[Zℓ] =

N∑

j=1

p̂∗j · 〈ψj |U †(θ)EℓU(θ)|ψj〉. (S1)

Thus partial derivative can be computed in the following way

∂L(ν)

∂νℓ
≈ −βE[Zℓ] + βeℓ. (S2)

It implies that the estimate’s error can be set as ǫ/β to ensure the gradient’s maximal error less than ǫ.
Next, we determine the number of samples such that the overall failure probability for estimating the gradient is less than δ.

Since the gradient has m partial derivatives, corresping to E[Zℓ], thus it suffices to estimate each with probability larger than

1− δ/m. Meanwhile, each mean E[Zℓ] can be computed by sampling. Notice that all |Zℓ| ≤ 1, by Chebyshev’s inequality, then

it suffices to take K = O(β2/ǫ2) samples to compute an estimate for each E[Zℓ] with precision ǫ/2β and probability larger

than 2/3. Furthermore, by Chernoff bounds, the probability can be improved to 1− η/2m at an additional cost of multiplicative

factor of D = O(log(2m/η)). It is worth pointing out that, for each variable Zℓ, the samples are taken according to the same

probability distribution p̂∗, thus it is natural to use the sampled states |ψts
j
〉 (cf. Algorithm 3) to compute all means E[Zℓ]. Then

the total number of samples is KD = O(β2 log(m/η)/ǫ2).
On the other hand, each value 〈ψj |U †(θ)EℓU(θ)|ψj〉 in Eq. (S1) has to be computed by performing the measurement. Note

that there are 2n values 〈ψj |U †(θ)EℓU(θ)|ψj〉 in all. To ensure the mean estimate’s failure probability less than η/2m, it

suffices to suppress each value’s failure probability to η/2n+1m. Following the same discussion in Lemma 1, the estimate for

value 〈ψj |U †(θ)EℓU(θ)|ψj〉 can be computed up to precision ǫ/2β using O(β2 log(2n+1m/η)/ǫ2) measurements.

Regarding the failure probability, by union bound, the overall failure probability is at mostm·(η/2m+KD·η/2n+1m), where

KD is the number of samples KD = O(β2 log(m/η)/ǫ2). Especially, for larger Hamiltonians, the number of measurements is

usually less than the dimension 2n. Thus, the overall failre probability is less than η.

Lastly, the total number of measurements is given below:

m ·KD ·O(β2 log(2n+1m/η)/ǫ2) = O(mβ4 log(m/η) log(2n+1m/η)/ǫ4). (S3)

�


	I Introduction
	II Problem Statement
	III Main results
	A Log-partition function estimation
	B Stochastic variational quantum eigensolver
	C Gradient estimation
	D Hamiltonian learning algorithm

	IV Numerical Results
	A Random Hamiltonian models
	B Quantum many-body models
	C Numerical results using fewer eigenvalues of Ising Hamiltonians

	V Conclusion
	 Acknowledgements
	 References
	A Proofs for Eqs. (9)-(10)
	B Proof for Proposition 1
	C Proof for Proposition 2
	D Proof for Proposition 3
	E Proof for Proposition 4

