
. .

Densely Nested Top-Down Flows for Salient Object
Detection

Chaowei Fang1†, Haibin Tian2†, Dingwen Zhang2∗, Qiang Zhang2, Jungong Han3 & Junwei Han4

1School of Artificial Intelligence, Xidian University, Xi’an 710071, China;
2School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China;

3Department of Computer Science, Aberystwyth University, Aberystwyth, Wales;
4Brain and Artificial Intelligence Laboratory, School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

Abstract With the goal of identifying pixel-wise salient object regions from each input image, salient object

detection (SOD) has been receiving great attention in recent years. One kind of mainstream SOD methods is

formed by a bottom-up feature encoding procedure and a top-down information decoding procedure. While

numerous approaches have explored the bottom-up feature extraction for this task, the design on top-down

flows still remains under-studied. To this end, this paper revisits the role of top-down modeling in salient

object detection and designs a novel densely nested top-down flows (DNTDF)-based framework. In every

stage of DNTDF, features from higher levels are read in via the progressive compression shortcut paths

(PCSP). The notable characteristics of our proposed method are as follows. 1) The propagation of high-level

features which usually have relatively strong semantic information is enhanced in the decoding procedure; 2)

With the help of PCSP, the gradient vanishing issues caused by non-linear operations in top-down information

flows can be alleviated. 3) Thanks to the full exploration of high-level features, the decoding process of our

method is relatively memory efficient compared against those of existing methods. Integrating DNTDF with

EfficientNet, we construct a highly light-weighted SOD model, with very low computational complexity.

To demonstrate the effectiveness of the proposed model, comprehensive experiments are conducted on six

widely-used benchmark datasets. The comparisons to the most state-of-the-art methods as well as the

carefully-designed baseline models verify our insights on the top-down flow modeling for SOD. The code of

this paper is available at https://github.com/new-stone-object/DNTD.

Keywords salient object detection, top-down flow, densely nested framework, convolutional neural net-

works
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1 Introduction

Salient object detection [1] aims at performing the pixel-level identification of the salient object region
from an input image. Due to its wide-ranging applications in vision and multimedia community, such as
object detection [2], video object segmentation [3], and weakly supervised object mining [4], numerous
efforts have been made in recent years to develop effective and efficient deep salient object detection
frameworks.

As shown in Figure 1, the existing deep salient object detection models can be divided into three typical
frameworks. The first one is the bottom-up encoding flow-based salient object detection framework (see
Figure 1 (a)). A bottom-up encoder is used for feature extraction, and then a simple classification head is
attached on the top of the encoder for predicting the pixel-wise saliency map. Such methods [5–9] occur in
relatively early ages in this research field by designing one or multiple forward network paths to predict the
saliency maps. To take advantage of multi-stage feature representations, some recent works [10–14] start
to incorporate additional network blocks to further explore the side information residing in the features
extracted by multiple stages of the forward pathway. The involvement of the learned side information
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Figure 1 A brief illustration of the three mainstream designs of the deep salient object detection frameworks. In (a), the saliency

map is derived from the topmost feature map of the backbone. The kind of SOD methods in (b) attempt to explore multi-scale

side information. (c) is the most popular decoding framework in SOD, which mines multi-scale features stage by stage.

plays a key role in predicting the desired salient object regions. These works form the second type of
learning framework, i.e., the side information fusion-based salient object detection framework (see Figure 1
(b)). Although the side information fusion-based frameworks have achieved great performance gains when
compared to the bottom-up encoding flow-based frameworks, one important cue for saliency detection,
i.e., the top-down information, has not been adequately explored. To this end, the third type of salient
object detection framework occurred, which is named as the top-down decoding flow-based appeared (see
Figure 1 (c)). In this framework, the main network pathway is formed by an encoder-decoder architecture,
where the decoder explores saliency patterns from the multi-scale semantic embeddings stage by stage and
gradually enlarges the resolution of the coarse high-level feature map [15–20]. Notice that this framework
may also use the side information to assist the decoding process, but the final saliency masks are obtained
from the last decoder stage rather than the fusion stage of the side features.

From the aforementioned top-down decoding flow-based approaches, we observe that their core mod-
eling components still focus on enhancing the side features and merging them into the decoding flow,
whereas the top-down information flow remains primitive—propagating from the former decoding stage to
the later one as is in the basic encoder-decoder architecture (see Figure 2 (a)). Considering that high-level
features possess a great wealth of semantic information, we propose a novel decoding framework, named
densely nested top-down flows (see Figure 2 (b)), to enhance the exploration of features extracted from
relatively higher levels. In our method, feature maps obtained by each encoding stage are progressively
compressed via shortcut paths and propagated to all subsequent decoding stages. The strengthens of our
method include the other two strong points. 1) The non-linear operations in the decoding stage are dis-
advantageous to the gradient back-propagation flow. Hence, the supervision signal propagated from the
final prediction to the feature maps of top encoding levels might vanish. For example, if a neuron is not
activated by the ReLU function, the gradient flow will be cut off, which means the supervision signal will
not be propagated backward. The progressive compression shortcut paths have no non-linear operations,
hence they can relieve the gradient vanishing problem. 2) The reuse of high-level features allows a light-
weighted decoding network design while achieving high salient object detection performance. Features
produced by top layers of the encoder contain relatively strong semantic information which is beneficial
to discriminate regions of salient objects from the background. Our method enhances the propagation of
these features, resulting to a memory efficient decoding framework.

The overall framework is shown in Figure 3. As can be seen, we use the U-net-like architecture as
the main network stream, upon which we further design a novel densely nested top-down flow path to
introduce the rich top-down information to the decoding stages. To reduce the computational complexity
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Figure 2 Comparison between the conventional design and our design for the top-down decoding flow-based salient object

detection framework. Our design explores richer semantic information from relatively top stages of the backbone during every

decoding stage and complies with the light-weighted principle.

of the decoding stages, we add a 1 × 1 channel compression layer to each side information pathway. In
fact, all the feature pathways in the proposed decoding framework only need to pass through a number
of 1 × 1 convolutional layers together with very small amounts of 3 × 3 convolutional layers, making
the entire network highly lightweight. Meanwhile, the full exploration of top-down information in the
proposed DNTD contributes to even better performance than the state-of-the-art SOD methods.

In summary, this work has the following three-fold main contributions: 1) We revisit an important yet
under-studied issue, i.e., the top-down flow modeling, of the recent SOD frameworks; 2) We design a highly
light-weighted learning framework, via introducing a novel densely nested top-down flow architecture; 3)
Comprehensive experiments are conducted, demonstrating the promising detection capacity and the lower
computational complexity of the proposed framework. Meanwhile, the insights on top-down modeling
are well verified.

2 Related Work

Traditional salient object detection methods are designed based on the hand-crafted features [21–26].
Recently, convolutional neural networks (CNN) have been extensively applied in salient object detection.
Thanks to the powerful feature extraction capability of CNN, a great breakthrough has been made in
devising effective SOD algorithms. CNN-based SOD frameworks can be categorized into three kinds,
including bottom-up encoding flow-based, side information fusion-based, and top-down decoding flow-
based framework as shown in Figure 2.

In bottom-up encoding flow-based framework, one or multiple forward network pathes are de-
signed to predict the saliency maps. For example, Liu et al. [5] propose a multi-resolution convolutional
neural network, which has three bottom-up encoding pathways to deal with patches captured from three
different resolutions of the input image. A similar idea is also proposed by Li and Yu [6], where a
three-pathway framework is devised to extract multi-scale features for every super-pixel and two fully
connected layers are adopted to fuse the features and predict the saliency value. In [7], Zhao et al.
propose a multi-context deep learning framework, which fuses a global-context forward pathway and a
local-context forward pathway to obtain the final prediction. In [8], Li et al. build a multi-task deep
learning model for salient object detection, where a shared bottom-up encoding pathway is used to extract
useful deep features and two parallel prediction heads are followed to accomplish the semantic segmen-
tation and saliency estimation, respectively. To learn to refine the saliency prediction results, Wang et



Chaowei Fang, et al. 4

1

2

2

2

2

5

1

2

2

2

4

1

3

2

2

1

2

2

Progressive compression 

top-down shortcut path

Input image

Output saliency mask

112x112x  1 56x56x　 28x28x　 14x14x　

7x7x　14x14x  128x28x　56x56x  1

 

112x112x 1      

2

4

8

16

PPM

2
d

r

1
d

r
3

d

r

4
d

r

5
d

4
d

3
d

2
d

1
d

1E 2E 3E 4E 5E

1F

1D2D3D4D

2F 3F 4F 5F

5C 4C 3C 2C

2 1d /d

2 1d /d

2 1d /d

2 1d /d

3 2d /d

3 2d /d

3 2d /d

4 3d /d

4 3d /d

5 4d /d

4rd /dg

3rd /dg

2rd /dg

1rd /dg

r r r r r

Concatenation Fusion ModuleN N times up-samplingN 1/N depth reduction

5G
4G

3G
2G

Score Layer

5D

Figure 3 A brief illustration of the proposed salient object detection framework, which is built on a basic U-net-like architecture

with the proposed DNTD to complement the rich top-down information into the decoding pathway. Inspired by [19], the PPM

is used to involve the global context features. The whole network is built by light-weighted network designs. More details of the

network architecture can be referred to in Sec. 3.

al. [9] propose a recurrent fully convolutional network architecture. Specifically, they combine multiple
encoding pathways, where saliency prediction results from the former encoding pathway are used to form
the input of the latter one.

The side information fusion-based salient object detection framework aims to further explore
the side information from the features extracted in each stage of the forward pathway. Specifically, based
on the network architecture of the holisitcally-nested edge detector [27], Hou et al. [10] introduce the
skip-layer structures to provide rich multi-scale feature enhancement for exploring the side information.
Zhao and Wu [11] propose a simple but effective network architecture. They enhance the low-level and
high-level side features in two sperate network streams, where the former is passed through a spatial
attention-based stream while the later is passed through a channel attention-based stream. In [12], Wu
et al. also build a two-stream side information flow. However, different from [11], the two-stream side
information flow is designed to fuse the multi-stage features for salient region identification and salient
edge detection, respectively. In [13], Su et al. use a boundary localization stream and a interior perception
stream to explore different side features for obtaining the high-selectivity features and high-invariance
features, respectively. Recently, Gao et al. [14] propose gOctConv, a flexible convolutional module to
efficiently transform and fuse both the intra-stage and cross-stage features for predicting the saliency
maps.

To take advantage of top-down information, the third type of salient object detection framework
emerges, i.e., the top-down decoding flow-based framework. In this framework, the main network
pathway is formed by an encoder-decoder architecture, where the decoder recognizes out saliency pat-
terns after fusing multi-scale features progressively. Notice that this framework may also uses the side
information to assist the decoding process, but the final saliency masks are obtained from the last decoder
stage instead of the fusion stage of the side features. One representative work is proposed by Zhang et
al. [20], where a U-net [28]-like architecture is used as the basic network and a bi-directional message
passing model is introduced into the network to extract rich side features to help each decoding stage.
Following this work, Liu et al. [19] design a pooling-based U-shape architecture, where they introduce
a global guidance module and a feature aggregation module to guide the top-down pathway. In [18],
Feng et al. propose an Attentive Feedback Module (AFM) and use it to better explore the structure of
objects in the side information pathway. Liu et al. [17] propose the local attended decoding and global
attended decoding schemes for exploring the pixel-wise context-aware attention for each decoding stage.
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More recently, in order to better explore the multi-level and multi-scale features, Pang et al. [16] design
aggregation interaction modules and self-interaction modules and insert them into the side pathway flow
and decoding flow, respectively. In [15], Zhao et al. propose a gated decoding flow, where multi-level
gate units are introduced in the side pathway to transmit informative context patterns to each decoding
stage. In this paper, we concentrate on further enhancing the usage of high-level features extracted by the
encoder in the decoding flow. A densely nested top-down flows-based decoding framework is proposed to
encourage the reuse of high-level features in every stage of the decoding process. Compared to existing
top-down decoding flow-based methods, the superiorities of our method are as follows. The gradient
vanishing problem caused by the nonlinear operations in the decoding procedure can be mitigated, and
a memory efficient decoding network is employed to facilitate the fusion of multi-stage features while
maintaining high detection performance.

3 Proposed Method

The purpose of this paper is to settle the saliency object detection problem. Given an RGB image X with
the size of h× w, we propose a novel efficient deep convolutional architecture to predict a saliency map
P ∈ [0, 1]h×w. Every element in P indicates the saliency probability value of the corresponding pixel. A
novel densely nested top-down flow architecture is built up to make full use of high-level feature maps.
The semantic information of top layers is propagated to bottom layers through progressive compression
shortcut paths. Furthermore, interesting insights are provided to design light-weighted deep convolutional
neural networks for salient object detection. Technical details are illustrated in subsequent sections.

3.1 Overview of Network Architecture

The overall network is built upon an encoder-decoder architecture, as shown in Figure 3. After removing
the fully connected layers, the backbone of an existing classification model, such as ResNet [29] and
EfficientNet [30], is regarded as the encoder. Given an input image X, the encoder is composed of five
blocks of convolution layers, which yield 5 feature maps, {Ei}5i=1. Every block reduces the horizontal and
vertical resolutions into half. Denote the height, width and depth of Ei be wi, hi and di, respectively.
We have, hi+1 = hi/2 and wi+1 = wi/2.

The target of the decoder is to infer the pixel-wise saliency map from these feature maps. First of all,
a compression unit is employed to reduce the depth of each scale of feature map,

Fi = Cr(Ei,W
c
i ), (1)

where Cr(·, ·) indicates the calculation procedure of the depth compression unit, consisting of a ReLU
layer [31] followed by a 1×1 convolution layer with the kernel of Wc

i . r represents the compression ratio,
which means the depth of Fi is di/r. Inspired from [19], the pyramid pooling module (PPM) [32, 33]
is used to extract a global context feature map G (with size of h5 × w5 × dg) from the last scale of
feature map F5 produced by the encoder. Afterwards, a number of convolution layers are set up to fuse
these compressed feature maps {Fi}5i=1 and the global feature map G, and output a soft saliency map,
based on the U-shape architecture. The distinguishing characteristics of our encoder are reflected in the
following aspects: 1) In every stage of the decoder, the features of the top stages of the encoder are
accumulated through progressive compression shortcut paths, forming into the feature representation for
SOD together with the additional information learned in the current stage. 2) Our decoder is comprised
of 1×1 convolutions and a few 3×3 convolutions, which only take up a small number of parameters
and consume a small amount of computational cost. The above decoder designs constitute our so-called
densely-nested top-down flows.

3.2 Densely Nested Top-Down Flow

In deep convolution neural networks, features extracted by top layers have strong high-level semantic
information. These features are advantageous at capturing the discriminative regions of salient ob-
jects. Especially, when the network is pretrained on large-scale image recognition datasets, such as
Imagenet [34], the top feature maps are intrinsically capable of identifying out salient foreground objects
according to [35]. However, their spatial resolutions are usually very coarse which means it is difficult to
locate fine object boundaries from them. On the other hand, bottom layers produce responses to local
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textural patterns which is beneficial to locate the boundaries of the salient object. Multi-resolution CNN
models [5, 6] uses multi-scale copies of the input image to explore both low-level and high-level context
information. However, such kind of methods are usually cumbersome and cost heavy computation bur-
den. Inspired by the holistic-nested network architecture [27], fusing multi-scale feature maps produced
by different convolution blocks of the encoder is the other popular choice in SOD [10, 36]. U-Net [28],
which currently prevails in deep SOD methods [15, 16, 19, 20], accumulates multi-scale feature maps in a
more elegant manner. As shown in Figure 1(c), the decoder usually shares the same number of stages
with the encoder, and every stage in the decoder merges the feature map of the corresponding stage of
the encoder forming a U-shape architecture. However, in a standard U-Net, the features produced by the
encoder are fused into the decoder via a simple linear layer. There exists room for improvement in more
fully utilizing these features, especially these relatively high-level features. The difficulty for propagating
gradients back into the topper layers of the encoder increases as the gradient back propagation process
needs to pass through more decoding stages.

For purpose of settling the above issues, we propose a novel top-down flow-based framework, named
densely nested top-down flows. Shortcuts are incorporated to feed all feature maps of higher stages
into every stage of the decoder. The uniqueness of these shortcuts is that high-level feature maps are
progressively compressed and enlarged stage by stage. As shown in Figure 3, Fi is propagated to the
bottom stages successively as follows,

Fi→j = Up×2(Crsj (Fi→j−1,W
s
i,j)),

∀j, 5− i+ 2 < j 6 5. (2)

Here, Fi→j indicates the semantic information propagated from Fi to Fj . Fi→5−i+2(= Fi) is the initial
input to the progressive compression shortcut path originated from Fi. Ws

i,j represents weights of a

1×1 convolution kernel, and the compression ratio rsj is equal to
d5−j+1

d5−j+2
. Up×2(·) upsamples the height

and width of the input feature map into 2 times via the bilinear interpolation. These feature maps
{Fji}5i=5−j+2 generated by the progressive compression shortcuts are fed into the j-th (j > 1) stage of the
decoder. No nonlinear function is used in the progressive compression shortcut path. Thus, the shortcut
path can facilitate the gradient back-propagation, relieving the gradient vanishing issue caused by the
multi-stage decoding process. On the other hand, compared with reducing the depth into the target
values at once, our progressive compression mechanism is more efficient, consuming less parameters.

The calculation process in the first stage of the decoder is a transition operation,

D1 = Up×2(F(F5,W
d
1)), (3)

where F(F5,W
d
1) consists of a ReLU layer and a 3× 3 convolution layer with kernel of W. It transmits

F5 into a h4 × w4 × d4/r tensor defined as D1.
For subsequent stages in the decoder, the calculation process is composed of two fusion steps. First,

for the j-th stage of the encoder, we derive an additional feature map from the (5− j+ 1)-th stage of the

encoder, F̂5−j+1 = C1(F5−j+1,W
a
5−j+1). The depths of the input and output feature maps are kept the

same. Together with F̂5−j+1, the feature maps from higher-level stages are concatenated and compressed
into a new context feature map,

Cj = Cj({F̂5−j+1,Fi→j |i = 5− j + 2, · · · , 5},Wf
j }). (4)

Note that the above fusion operation compresses the concatenated feature maps with the ratio of j, which
indicates the depth of Cj is d5−j+1/r. The global feature G is complemented to the j-th stage of the

decoder as well, Gj = Up×2j−1(Crgj (G,Wg
j )) where rgj =

dg
d5−j+1

. Then, Dj−1, Fj , Cj , and Gj are fused

with a pre-placed ReLU and a 3 × 3 convolution layer, yielding the feature representation of the j-th
stage of the decoder,

Dj = Up×2(F({Dj−1,Fj ,Cj ,Gj},Wd
j )). (5)

The depth of Dj is transformed into d5−j/r. The final output is produced by a score prediction module
consisting of a pre-placed ReLU layer, a 1× 1 convolution layer and a Sigmoid function S(·),

P = S(Up×2(D5,W
o)), (6)
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Figure 4 PR curves on the two largest salient object datasets. * denotes the models use the EfficientNet-B3 as the backbone

while the rest models use the ResNet50 as the backbone.

where Wo represents the kernel of the convolution layer, P (h × w × 1) is the final predicted saliency
map.

The advantage of our densely nested decoder is that every stage is accessible to all higher-level feature
maps of the encoder. This framework greatly improves the utilization of high-level features in the top-
down information propagation flow.

3.3 Light-Weighted Network Design

In this paper, we are not stacking piles of convolution layers to build a SOD network with high perfor-
mance. Our devised model has a light-weighted architecture while preserving high performance.

Without backbones initialized with parameters pre-trained on Imagenet, it is difficult to achieve high
performance via training a light-weighted backbone from scratch such as CSNet [14]. However, these
initialized parameters are learned for solving the image recognition task. This means the features ex-
tracted by the pre-trained backbone are responsible for jointly locating the discriminative regions and
predicting semantic categories. In the SOD task, it is no longer necessary to recognize the category of the
salient object. Considering the above point, we can assume that there exists a large amount of redundant
information in the features extracted by the backbone. Hence, in our method, a large value is adopted
for the compression ratio r in (1). We empirically find out that using r ∈ {2, 4, 8, 16} has little effects on
the SOD performance in our method, as will be illustrated in the experimental section. With the help of
a large compression ratio, the computation burden in the decoder can be greatly reduced.

Previous high-performance SOD models are usually equipped with decoders having a moderate amount
of calculation complexity. For example, [32] uses multiple 3×3 convolutions to construct a pyramid fusion
module in every stage of the decoder. [16] adopts a number of 3× 3 convolutions to aggregate inter-level
and inter-layer feature maps in the decoder. Cascaded decoders are employed to implement top-down
information in [37, 38], which lead to a decoding procedure with large computation burden. In our
proposed model, all convolutions adopted in the progressive compression shortcut paths have the kernel
size of 1× 1. This makes these complicated shortcuts only cost a few weights and computation resources
in fact. Furthermore, benefitted from rich top-down information, employing a single 3× 3 convolution in
every encoder stage is sufficient to construct a high-performance decoder.

The above network designs help us build up an effective and cost-efficient salient object detection
model.
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DUTS-TE HKU-IS

Model Backbone Param FLOPs Fmax↑MAE↓ S↑ Fmax↑MAE↓ S↑

Resnet & VGG

MLMSNet [39] VGG16 68.024M 162.515G 0.854 0.048 0.861 0.922 0.039 0.907

BASNet [40] ResNet34 87.060M 161.238G 0.860 0.047 0.866 0.929 0.032 0.909

CSF+Res2Net [10] Res2Net 36.529M 13.223G 0.893 0.037 0.890 0.936 0.030 0.921

GateNet [15] ResNet50 - - 0.889 0.040 0.885 0.935 0.034 0.915

F3Net [37] ResNet50 25.537M 10.998G 0.897 0.035 0.888 0.939 0.028 0.917

EGNet [41] ResNet50 111.660M 198.253G 0.893 0.039 0.885 0.938 0.031 0.918

PoolNet [19] ResNet50 68.261M 62.406G 0.894 0.036 0.886 0.938 0.030 0.918

MINet [16] ResNet50 162.378M 70.495G 0.888 0.037 0.884 0.936 0.029 0.919

CPD [42] ResNet50 47.850M 11.877G 0.865 0.043 0.869 0.925 0.034 0.906

SCRN [12] ResNet50 25.226M 10.086G 0.888 0.039 0.885 0.934 0.034 0.916

ITSD [38] ResNet50 26.074M 15.937G 0.883 0.041 0.885 0.934 0.031 0.917

OURS ResNet50 28.838M 8.083G 0.898 0.033 0.891 0.940 0.028 0.921

More light-weighted backbone

CSNet [10] None 0.141M 1.185G 0.819 0.074 0.822 0.899 0.059 0.880

OURS EfficientNet-B0 4.606M 0.787G 0.891 0.035 0.890 0.936 0.030 0.920

CSF [10] EfficientNet-B3 12.328M 1.961G 0.892 0.032 0.894 0.936 0.027 0.921

F3Net [37] EfficientNet-B3 12.588M 5.701G 0.906 0.033 0.898 0.944 0.025 0.926

MINet [16] EfficientNet-B3 14.793M 7.363G 0.879 0.044 0.875 0.929 0.036 0.909

ITSD [38] EfficientNet-B3 11.374M 4.148G 0.894 0.041 0.894 0.939 0.034 0.924

OURS EfficientNet-B3 11.522M 1.738G 0.907 0.030 0.905 0.944 0.027 0.928

Table 1 Quantitative comparison of our method against other SOD methods on DUST-TE and HKU-IS datasets. All these

models are trained on DUTS-TR. The performances ranked first, second and third are marked by red, green and blue respectively.

ECSSD PASCAL-S DUT-O SOD

Model Fmax↑MAE↓ S↑ Fmax↑MAE↓ S↑ Fmax↑MAE↓ S↑ Fmax↑MAE↓ S↑

CSNet [10] 0.914 0.069 0.888 0.835 0.104 0.813 0.792 0.080 0.803 0.827 0.139 0.747

OURS+EffiB0 0.942 0.038 0.918 0.872 0.063 0.858 0.827 0.052 0.841 0.873 0.099 0.795

CSF [10] 0.944 0.034 0.921 0.872 0.061 0.860 0.826 0.052 0.844 0.881 0.089 0.808

F3Net [37] 0.947 0.032 0.925 0.888 0.058 0.871 0.844 0.056 0.844 0.890 0.083 0.821

MINet [16] 0.936 0.043 0.912 0.873 0.070 0.855 0.813 0.067 0.821 0.858 0.101 0.795

ITSD [38] 0.945 0.042 0.924 0.877 0.065 0.872 0.834 0.058 0.854 0.882 0.096 0.815

OURS 0.950 0.033 0.927 0.888 0.058 0.872 0.844 0.047 0.857 0.893 0.091 0.811

Table 2 Quantitative comparison of our method against other SOD methods on ECSSD, PASCAL-S, DUT-O and SOD datasets.

All these models are trained on DUTS-TR. The performances ranked first, second and third are marked by red, green and blue

respectively. No pretrained backbone is used in CSNet. ‘OURS+EffiB0’ indicates the variant of our method using EfficientNet-B0

as the backbone. Other methods use EfficientNet-B3 as the backbone.
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Figure 5 Qualitative comparison of our method against other SOD methods.

3.4 Network Training

To make our model pay more attention to the edge of salient object, we adopt the edge weighted binary
cross entropy loss [37] during the training stage,

Lwbce =

H∑
i=1

W∑
j=1

(1 + γαi,j)BCE (Pi,j , Yi,j) , (7)

αi,j =

∣∣∣∣∣
∑δ
m=−δ

∑δ
n=−δ Yi+m,j+n

(2δ + 1)2
− Yij

∣∣∣∣∣ , (8)

where BCE(·, ·) is the binary cross entropy loss function, and γ is a constant. Pi,j and Yi,j are the
value at position (i, j) of P and the ground-truth saliency map Y, respectively. αi,j measures the weight
assigned to the loss at position (i, j), which receives a relatively large when (i, j) locates around the
boundaries of salient objects. δ represents the radius of window size for calculating αi,j , and mirrored
padding is adopted to fill positions outside the border of the image. Adam [43] is used to optimize network
parameters.

4 Experiments

4.1 Datasets & Evaluation Metrics

The DUTS [44] is the largest dataset for salient object detection, containing 10,553 training images
(DUTS-TR) and 5,019 testing images (DUTS-TE). Our proposed model is trained with images of DUTS-
TR and evaluated on six commonly used salient object detection datasets, including DUTS-TE, HKU-
IS [6], ECSSD [45], PASCAL-S [46], DUT-OMRON [21], and SOD [47].

Three metrics are adopted to evaluate the performance of SOD methods, including the maximum of
F-measure (Fmax) [48], mean absolute error (MAE), and S-measure (S) [49].

4.2 Implementation Details

In our experiments, our proposed top-down flow mechanism is integrated with two kinds of backbone
models, including ResNet50 [29] and EfficientNet [30]. For ResNet50, we adopt the knowledge distillation
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Figure 6 Comparisons of the parameters and FLOPs between different decoders based on EfficientNet-B3.

PCSP PPM Fmax MAE S

7 7 0.887 0.039 0.883

7 3 0.891 0.037 0.886

1 3 0.891 0.034 0.890

2 3 0.894 0.034 0.892

3 3 0.896 0.034 0.891

4 7 0.891 0.037 0.886

4 3 0.898 0.033 0.891

Table 3 Ablation study on DUTS-TE dataset, using backbone ResNet50. 3/7indicates whether the module is used or not. The

number of PCSP denotes the number of most top feature maps of the encoder which are propagated to bottom convolutional blocks

of the decoder.

strategy in [50] to initialize network parameters. The other models, EfficientNet-B0 and EfficientNet-
B3, are pretrained on Imagenet [51]. The trainable parameters of the decoder are initialized as in [52].
Random horizontal flipping and multi-scale training strategy (0.8,0.9,1.0,1.1 and 1.2 times geometric
scaling) are applied for data augmentation. All models are trained with 210 epochs and the batch size
is set as 1. The learning rate is initially set to 1.0× 10−5 and 4.5× 10−4 respectively for ResNet50 and
EfficientNet, and divided by 10 at the at the 168-th epoch. Hyper-parameters in (7) are set as γ = 3 and
δ = 10. A variety of values {2, 4, 8, 16, 32} are tested for the compression ratio r. Without specification, r
is set as 4, 2 and 2 for ResNet50, EfficientNet-B0 and EfficientNet-B3, respectively. Our proposed model
is implemented with PyTorch, and one 11GB NVIDIA GTX 1080Ti GPU is used to train all models.

4.3 Comparison with State-of-the-arts

As presented in Table 1 and 2, we compare our method against various existing SOD methods. For a fair
comparison, we reimplemented very recently proposed SOD algorithms, including CSF [14], F3Net [37],
MINet [16] and ITSD [38], via replacing their original backbones with EfficientNet-B3. FLOPs are
calculated with a 288× 288 input image. Table 1 presents experimental results of various SOD methods
which use VGG [34], ResNet, and EfficientNet as backbones, on the two largest datasets, DUTS and
HKU-IS. Our method surpasses state-of-the-art methods while consuming much fewer FLOPs. When
using ResNet50 as backbone, our method achieves marginally better performance than the second best
method F3Net [37], and the FLOPs consumed by our method are 2.915G fewer. When integrated with
EfficientNet-B3, on the DUTS-TE dataset, the S-measure produced by our method is 0.007 higher than
that produced by F3Net, while the FLOPs consumed by our method are 30.48% of those consumed by
F3Net. Table 2 showcases SOD performance on the other 4 datasets, including ECSSD, PASCAL-S,
DUT-O, and SOD. On the DUT-O dataset, our method gives rise to results having 9.62% lower MAE,
compared to the results of CSF. Without using a pre-trained backbone, the performance of CSNet is
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DCB Fmax MAE S FLOPs Param

3×3 0.907 0.0305 0.905 0.108G 0.825M

FAM 0.904 0.0312 0.902 0.123G 1.906M

Table 4 Inner comparisons of different variants of our method based on EfficientNet-B3. ‘DCB’ indicates the convolutional block

adopted in every stage of the decoder. ‘FAM’ means the module containing a single 3×3 convolution operation is replaced with the

FAM [19] in every stage of the decoder.

scale Fmax MAE S Param FLOPs

32 0.884 0.036 0.880 379.50K 63.77M

16 0.890 0.035 0.888 840.92K 154.83M

8 0.893 0.034 0.887 2.01M 420.96M

4 0.898 0.033 0.891 5.33M 1.29G

2 0.901 0.031 0.895 15.90M 4.37G

Table 5 Comparisons of performance, parameters and FLOPs which is based on ResNet50 using different compression scale.

Param and FLOPs denote the parameters and FLOPs of the decoder.

inferior though it costs a small number of parameters and FLOPs. On the basis of EfficientNet-B0, our
proposed method contributes to a very efficient SOD model which has less FLOPs than CSNet while
maintaining appealing SOD performance. Overall, our method achieves the best performance across
backbone models.

In addition, We follow [41] to compare the precision-recall curves of our approach with the state-of-
the-art methods on the DUTS and HKU-IS datasets. A gallery of SOD examples is also visualized in
Figure 5 for qualitative comparisons. Our method performs clearly better than other methods, across
small and large salient objects.

4.4 Ablation Study

Efficacy of Main Components In this experiment, we first verify the efficacy of main components
in our proposed model, including the progressive compression shortcut path (PCSP) and the PPM for
global feature extraction. ResNet50 is used to construct the backbone of our proposed model and SOD
performance is evaluated on the DUTS-TE dataset. The experimental results are presented in Table 3.
As more top-down feature maps are used to complement high-level semantic information in bottom con-
volution layers via multiple PCSPs, the performance of our method increases consistently. The adoption
of 4 PCSPs, induces to performance gains of 0.005 (when PPM is not used) and 0.011 (when PPM is
used) on the Fmax metric. Besides, we can observe that the global information provided by the PPM and
high-level semantic information provided by the PCSP can complement each other. Without using any
of the two modules, performance degradation is caused.
Different Variants of Our Method We further provide inner comparisons between variants of our
proposed model, in Table 4. To validate whether more complicated convolution blocks is effective in the
decoder of our method, we replace the 3×3 convolution layer with the FAM block used in [19] to build
the fusion module of each decoding stage. However, no obvious performance gain is obtained.

4.5 Efficiency Discussions

Analysis of Compression Ratio The influence of using different ratios to compress the features of the
encoder as in (1) is illustrated in Table 5. As discussed in Section 3.3, there are large amounts of redundant
information in the features extracted by the backbone since it is pre-trained for image recognition. Hence,
using a moderately large ratio (up to 16) to compress features of the network backbone has no significant
effect on the SOD performance, according to the results reported in Table 5. The benefit of using a large
compression ratio is achieving the goal of light-weighted network design in our method while not causing
unbearable performance decrease.
Complexity of Decoder As shown in Figure 6, the decoder of our proposed model costs significantly
fewer FLOPs than the decoders of recent SOD models, including F3Net, ITSD, CSF and MINet. The
parameters and FLOPs are counted using the backbone of Efficient-B3. As can be observed from Table
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1 and 2, our method outperforms these methods on most datasets and metrics. This indicates that our
method achieves better performance even if less memory is consumed.

5 Conclusion

In this paper, we first revisit existing CNN-based top-down flow architectures. Then, to make full usage
of multi-scale high-level feature maps, progressive compression shortcut paths are devised to enhance the
propagation semantic information residing in higher-level features of the encoder to bottom convolutional
blocks of the decoder, which form the novel densely nested top-down flows. Extensive experiments on
six widely-used benchmark datasets indicate that the proposed SOD model can achieve state-of-the-art
performance. Notably, the computational complexity and model size of the proposed framework are also
very light-weighted.
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