Skip to main content
Log in

A survey on cryptographic techniques for protecting big data security: present and forthcoming

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Big data drive multidimensional convergence and profound innovations among industries and provide novel ways of exploring the world. As they significantly create economic and social value, big data meaningfully impact the implementation and management of information security and privacy protection. Cryptographic technologies are used to protect the security and entire life cycle of big data. The demand for this technology is multiplied when the data are stored in the cloud. They are stored in the cloud in the form of ciphertext, and the driving requirement for data retrieval, sharing, and manipulation places the security of data at risk. The all-or-nothing approach of traditional cryptography systems cannot realize the release and processing of data information with flexible and increasingly fine granularity. Consequently, dealing with the relationship between privacy protection and data utilization, as well as navigating the blurry boundaries between subverting either plaintext or ciphertext, has become a research focus of the current cryptographic trend for protecting big data security. Presently, there are many studies designed to solve these limitations. First, security requirements and source encryption mode for future big data systems and applications are elaborated. Then, focusing on the practical security and functionality of the big data life cycle, including storage, retrieval, sharing, calculation, statistical analysis, and utilization, the research being conducted based on those functions is reviewed. For each cryptographic technology that meets the requirement of each type of big data security or application, security and efficiency comments and sufficient comparison analyses of cryptography schemes or protocols are provided; moreover, the current general problems and development trends are expounded. Because the current innovative research on cryptographic technology was primarily based on the development or improvement of a single solution, the study on the security of the entire big data life cycle from a holistic perspective is extremely limited. Finally, based on surveys and integration of cryptographic techniques, a compatible and comprehensive reference cryptographic architecture for big data security (Z-CABDS) is proposed, which can be used to guide each sub-direction to cooperate with each other to achieve the full life cycle security of big data. Moreover, certain challenges, open problems, and thoughts on future research related to the cryptography of big data security from the viewpoint of the entire big data life cycle are addressed, including views on information theory, the intersection and fusion of technologies, and new technology derivation, which aims to provide a good reference and inspiration for follow-up research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiao L, Hao Y L, Feng D G. Stream cipher designs: a review. Sci China Inf Sci, 2020, 63: 131101

    Article  MathSciNet  Google Scholar 

  2. Yang J, Johansson T. An overview of cryptographic primitives for possible use in 5G and beyond. Sci China Inf Sci, 2020, 63: 220301

    Article  MathSciNet  Google Scholar 

  3. Dobraunig C, Eichlseder M, Mendel F, et al. 2016. Ascon-submission to the CAESAR competition. http://ascon.iaik.tugraz.at

  4. Wu H, Preneel B. AEGIS: a fast authenticated encryption algorithm (v1.1). http://competitions.cr.yp.to/round3/aegisv11.pdf.2016

  5. Jean J, Nikolic I, Peyrin T, et al. Deoxys v1.41. http://competitions.cr.yp.to/round3/deoxysv141.pdf. 2016

  6. Wu H. ACORN: A lightweight authenticated cipher (v3). http://competitions.cr.yp.to/round3/acornv3.pdf. 2016

  7. Ted K, Rogaway P. OCB(v1.1). https://competitions.cr.yp.to/round3/ocbv11.pdf. 2016

  8. Elena A, Andrey B, Nilanjan D, et al. COLM v1. http://competitions.cr.yp.to/round3/colmv1.pdf. 2016

  9. Datta N, Luykx A, Mennink B, et al. Understanding RUP integrity of COLM. IACR Trans Symmetric Cryptol, 2017, 2017: 143–161

    Article  Google Scholar 

  10. Jutla C S. Encryption modes with almost free message integrity. J Cryptol, 2008, 21: 547–578

    Article  MathSciNet  MATH  Google Scholar 

  11. Abed F, Forler C, List E, et al. RIV for robust authenticated encryption. In: Fast Software Encryption. Berlin: Springer, 2016. 23–42

    Chapter  MATH  Google Scholar 

  12. Rogaway P, Shrimpton T. A provable-security treatment of the key-wrap problem. In: Advances in Cryptology—EUROCRYPT 2006. Berlin: Springer, 2006. 373–390

    Chapter  Google Scholar 

  13. Neethu R, Sindhu M, Srinivasan C. XUBA: an authenticated encryption scheme. In: Data Engineering and Intelligent Computing. Singapore: Springer, 2016. 647–655

    Google Scholar 

  14. Ashur T, Dunkelman O, Luykx A. Boosting authenticated encryption robustness with minimal modifications. In: Advances in Cryptology—CRYPTO 2017. Berlin: Springer, 2017. 3–33

    Chapter  Google Scholar 

  15. Naito Y. Tweakable blockciphers for efficient authenticated encryptions with beyond the birthday-bound security. IACR Trans Symmetric Cryptol, 2017, 2017: 1–26

    Article  Google Scholar 

  16. Chakraborti A, Chattopadhyay A, Hassan M, et al. TriviA: a fast and secure authenticated encryption scheme. In: Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2015. 330–353

    MATH  Google Scholar 

  17. Reyhanitabar R, Vaudenay S, Vizár D. Boosting OMD for almost free authentication of associated data. In: Proceedings of International Workshop on Fast Software Encryption. Berlin: Springer, 2015. 411–427

    MATH  Google Scholar 

  18. Cogliani S, Maimut D, Naccache D, et al. Offset Merkle-Damgård (OMD) version 1.0. 2016. http://competitions.cr.yp.to/round1/omdv10.pdf

  19. Thomas P, Yannick S. Counter-in-tweak: authenticated encryption modes for tweakable block ciphers. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2016. 33–63

    MATH  Google Scholar 

  20. Bellare M, Tackmann B. The multi-user security of authenticated encryption: AES-GCM in TLS 1.3. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2016. 247–276

    MATH  Google Scholar 

  21. Reyhanitabar R, Vaudenay S, Vizar D. Authenticated encryption with variable stretch. In: Advances in Cryptology—ASIACRYPT 2016. Berlin: Springer, 2016. 396–425

    MATH  Google Scholar 

  22. Hoang V, Krovetz T, Rogaway P. Robust authenticated-encryption AEZ and the problem that it solves. In: Advances in Cryptology—EUROCRYPT 2015. Berlin: Springer, 2015. 15–44

    Chapter  Google Scholar 

  23. Barwell G, Martin D P, Oswald E, et al. Authenticated encryption in the face of protocol and side channel leakage. In: Advances in Cryptology—ASIACRYPT 2017. Berlin: Springer, 2017. 693–732

    Chapter  MATH  Google Scholar 

  24. Barbosa M, Farshim P. Indifferentiable authenticated encryption. In: Advances in Cryptology—CRYPTO 2018. Cham: Springer, 2018. 187–220

    Chapter  Google Scholar 

  25. Simon T, Batina L, Daemen J, et al. Friet: an authenticated encryption scheme with built-in fault detection. In: Advances in Cryptology—EUROCRYPT 2020. Berlin: Springer, 2020. 581–611

    Chapter  Google Scholar 

  26. Todo Y, Morii M. Bit-based division property and application to simon family. In: Fast Software Encryption. Berlin: Springer, 2016. 357–377

    Chapter  Google Scholar 

  27. Todo Y, Isobe T, Hao Y, et al. Cube attacks on non-blackbox polynomials based on division property. In: Advances in Cryptology—CRYPTO 2017. Berlin: Springer, 2017. 250–279

    Chapter  Google Scholar 

  28. Zhang P, Guan J, Li J, et al. Research on the confusion and diffusion properties of the initialization of MORUS. J Cryptol Res, 2015, 45: 155–187

    Google Scholar 

  29. Dwiedi A D, Morawiecki P, Wójtowicz S. Differential and rotational cryptanalysis of round-reduced MORUS. In: Proceedings of International Conference on Security and Cryptography, 2017. 23–56

  30. Dobraunig C, Eichlseder M, Mendel F, et al. Cryptanalysis of ascon. In: Topics in Cryptology—CT-RSA 2015. Berlin: Springer, 2015. 371–387

    Chapter  Google Scholar 

  31. Morawiecki P, Pieprzyk J, Straus M, et al. Applications of key recovery cube-attack-like. IACR Cryptology ePrint Archive, 2015. https://eprint.iacr.org/2015/1009

  32. Ashur T, Dunkelman O, Luykx A. Boosting authenticated encryption robustness with minimal modifications. In: Advances in Cryptology—CRYPTO 2017. Berlin: Springer, 2017. 3–33

    Chapter  Google Scholar 

  33. Bost R, Sanders O. Trick or tweak, on the (In)security of OTR’s tweaks. In: Advances in Cryptology—ASIACRYPT 2016. Berlin: Springer, 2016. 333–353

    Chapter  MATH  Google Scholar 

  34. Bay A, Ersoy O, Karakoc F. Universal forgery and key recovery attacks on ELmD authenticated encryption algorithm. In: Advances in Cryptology—ASIACRYPT 2016. Berlin: Springer, 2016. 354–368

    Chapter  Google Scholar 

  35. Dodis Y, Grubbs P, Ristenpart T, et al. Fast message franking: from invisible salamanders to encryptment. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2018. 155–186

    Google Scholar 

  36. Grubbs P, Lu J, Ristenpart T. Message franking via committing authenticated encryption. In: Advances in Cryptology—CRYPTO 2017. Berlin: Springer, 2017. 66–97

    Chapter  Google Scholar 

  37. Ateniese G, Burns R C, Curtmola A R, et al. Provable data possession at untrusted stores. In: Proceedings of the ACM Conference on Computer and Communications Security, 2007. 598–609

  38. Juels A, Kaliski J B S. PORs: proofs of retrievability for large files. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, 2007. 584–597

  39. Shacham H, Waters B. Compact proofs of retrievability. In: Advances in Cryptology—CRYPTO 2008. Berlin: Springer, 2008. 90–107

    Chapter  Google Scholar 

  40. Wang C, Ren K, Lou W, et al. Toward publicly auditable secure cloud data storage services. IEEE Network, 2010, 24: 19–24

    Article  Google Scholar 

  41. Xu C X, He X H, Abraha D. Cryptanalysis of Wang’s auditing protocol for data storage security in cloud computing. In: Information Computing and Applications. Berlin: Springer, 2012. 422–428

    Chapter  Google Scholar 

  42. Worku S G, Xu C X, Zhao J, et al. Secure and efficient privacy-preserving public auditing scheme for cloud storage. Comput Electrical Eng, 2014, 40: 1703–1713

    Article  Google Scholar 

  43. Cui H, Mu Y, Au M H. Proof of retrievability with public verifiability resilient against related-key attacks. IET Inf Security, 2015, 9: 43–49

    Article  Google Scholar 

  44. Liu H, Chen L, Davar Z, et al. Insecurity of an efficient privacy-preserving public auditing scheme for cloud data storage. J Univers Comput Sci, 2015, 21: 473–482

    Google Scholar 

  45. Yu J, Ren K, Wang C, et al. Enabling cloud storage auditing with key-exposure resistance. IEEE Trans Inform Forensic Secur, 2015, 10: 1167–1179

    Article  Google Scholar 

  46. Yu J, Ren K, Wang C. Enabling cloud storage auditing with verifiable outsourcing of key updates. IEEE Trans Inform Forensic Secur, 2016, 11: 1362–1375

    Article  Google Scholar 

  47. Wang B Y, Li B C, Li H. Oruta: privacy-preserving public auditing for shared data in the cloud. IEEE Trans Cloud Comput, 2014, 2: 43–56

    Article  Google Scholar 

  48. Yu Y, Au M H, Mu Y, et al. Enhanced privacy of a remote data integrity-checking protocol for secure cloud storage. Int J Inf Secur, 2015, 14: 307–318

    Article  Google Scholar 

  49. Liu J, Huang K, Rong H, et al. Privacy-preserving public auditing for regenerating-code-based cloud storage. IEEE Trans Inform Forensic Secur, 2015, 10: 1513–1528

    Article  Google Scholar 

  50. Wang B, Li B, Li H. Panda: public auditing for shared data with efficient user revocation in the cloud. IEEE Trans Serv Comput, 2015, 8: 92–106

    Article  Google Scholar 

  51. Yang G, Yu J, Shen W, et al. Enabling public auditing for shared data in cloud storage supporting identity privacy and traceability. J Syst Software, 2016, 113: 130–139

    Article  Google Scholar 

  52. Chris E C, Alptekin K, Charalampos P, et al. Dynamic provable data possession. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2009. 213–222

  53. Liu C, Ranjan R, Yang C, et al. MuR-DPA: top-down levelled multi-replica merkle hash tree based secure public auditing for dynamic big data storage on cloud. IEEE Trans Comput, 2015, 64: 2609–2622

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen X, Shang T, Kim I, et al. A remote data integrity checking scheme for big data storage. In: Proceedings of IEEE 2nd International Conference on Data Science in Cyberspace (DSC), 2017. 53–59

  55. Sookhak M, Yu F R, Zomaya A Y. Auditing big data storage in cloud computing using divide and conquer tables. IEEE Trans Parallel Distrib Syst, 2018, 29: 999–1012

    Article  Google Scholar 

  56. Cash D, Küpçü A, Wichs D. Dynamic proofs of retrievability via oblivious RAM. J Cryptol, 2017, 30: 22–57

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang B, Li B, Li H, et al. Certificateless public auditing for data integrity in the cloud. In: Proceedings of IEEE Conference on Communications and Network Security (CNS), 2013. 233–239

  58. He D, Zeadally S, Wu L. Certificateless public auditing scheme for cloud-assisted wireless body area networks. IEEE Syst J, 2018, 12: 64–73

    Article  Google Scholar 

  59. Li J, Squicciarini A C, Lin D, et al. MMBcloud-tree: authenticated index for verifiable cloud service selection. IEEE Trans Dependable Secure Comput, 2017, 14: 185–198

    Article  Google Scholar 

  60. Shen W, Qin J, Yu J, et al. Enabling identity-based integrity auditing and data sharing with sensitive information hiding for secure cloud storage. IEEE Trans Inform Forensic Secur, 2019, 14: 331–346

    Article  Google Scholar 

  61. Yang L, Xia L. An efficient and secure public batch auditing protocol for dynamic cloud storage data. In: Proceedings of International Computer Symposium (ICS), 2017. 671–675

  62. Bao H, Chen L. A lightweight privacy-preserving scheme with data integrity for smart grid communications. Concurr Computat-Pract Exper, 2016, 28: 1094–1110

    Article  Google Scholar 

  63. Xu J, Wei L, Wu W, et al. Privacy-preserving data integrity verification by using lightweight streaming authenticated data structures for healthcare cyber-physical system. Future Gener Comput Syst, 2020, 108: 1287–1296

    Article  Google Scholar 

  64. Liu X Y, Liu S L, Gu D W, et al. Two-pass authenticated key exchange with explicit authentication and tight security. In: Advances in Cryptology—ACIACRYPT 2020. Berlin: Springer, 2020. 785–814

    Chapter  Google Scholar 

  65. Mitchell C J. Yet another insecure group key distribution scheme using secret sharing. J Inf Secur Appl, 2021, 57: 102713

    Google Scholar 

  66. Kong L, Zhai F, Zhao Y J, et al. Lightweight key management scheme for wireless communication system of distribution network. J Phys Conf Ser, 2021, 1754: 01216–012134

    Article  Google Scholar 

  67. Fan-Yuan G J, Wang Z H, Wang S, et al. Optimizing decoy-state protocols for practical quantum key distribution systems. Adv Quantum Tech, 2021, 4: 2000131

    Article  Google Scholar 

  68. Emura K, Seo J H, Watanabe Y. Efficient revocable identity-based encryption with short public parameters. Theor Comput Sci, 2021, 863: 127–155

    Article  MathSciNet  MATH  Google Scholar 

  69. Katsumata S, Matsuda T, Takayasu A. Lattice-based revocable (hierarchical) IBE with decryption key exposure resistance. In: Public-Key Cryptography—PKC 2019. Berlin: Springer, 2019. 41–71

    Google Scholar 

  70. Blaze M, Bleumer G, Strauss M. Divertible protocols and atomic proxy cryptography. In: Advances in Cryptology—EUROCRYPT 1998. Berlin: Springer, 1998. 127–144

    Chapter  Google Scholar 

  71. David D, Stephan K, Thomas L, et al. Revisiting proxy re-encryption: forward secrecy, improved security, and applications. In: Public-Key Cryptography—PKC 2018. Berlin: Springer, 2018. 219–250

    Google Scholar 

  72. Guo H, Zhang Z F, Xu J, et al. Accountable proxy re-encryption for secure data sharing. IEEE Trans Dependable Secure Comput, 2021, 18: 145–159

    Article  Google Scholar 

  73. Green M, Ateniese G. Identity-based proxy re-encryption. In: Applied Cryptography and Network Security. Berlin: Springer, 2007. 288–306

    Chapter  Google Scholar 

  74. Xu P, Jiao T, Wu Q, et al. Conditional identity-based broadcast proxy re-encryption and its application to cloud email. IEEE Trans Comput, 2016, 65: 66–79

    Article  MathSciNet  MATH  Google Scholar 

  75. Ge C, Susilo W, Fang L, et al. A CCA-secure key-policy attribute-based proxy re-encryption in the adaptive corruption model for dropbox data sharing system. Des Codes Cryptogr, 2018, 86: 2587–2603

    Article  MathSciNet  MATH  Google Scholar 

  76. Liu Y P, Ren Y J, Ge C P, et al. A CCA-secure multi-conditional proxy broadcast re-encryption scheme for cloud storage system. J Inf Secur Appl, 2019, 47: 125–131

    Google Scholar 

  77. Fang L M, Wang J D, Ge C P, et al. Conditional proxy broadcast re-encryption with fine grain policy for cloud data sharing. Int J Embedded Syst, 2019, 11: 115–124

    Article  Google Scholar 

  78. Ge C, Liu Z, Xia J, et al. Revocable identity-based broadcast proxy re-encryption for data sharing in clouds. IEEE Trans Dependable Secure Comput, 2021, 18: 1214–1226

    Article  Google Scholar 

  79. Huang Q, Yang Y, Fu J. PRECISE: identity-based private data sharing with conditional proxy re-encryption in online social networks. Future Gener Comput Syst, 2018, 86: 1523–1533

    Article  Google Scholar 

  80. Borcea C, Gupta A B D, Polyakov Y, et al. PICADOR: end-to-end encrypted publish-subscribe information distribution with proxy re-encryption. Future Gener Comput Syst, 2017, 71: 177–191

    Article  Google Scholar 

  81. Vijayakumar V, Priyan M K, Ushadevi G, et al. E-health cloud security using timing enabled proxy re-encryption. Mobile Netw Appl, 2019, 24: 1034–1045

    Article  Google Scholar 

  82. Sahai A, Waters B. Fuzzy identity-based encryption. In: Advances in Cryptology—EUROCRYPT 2005. Berlin: Springer, 2005. 457–473

    Chapter  Google Scholar 

  83. Boneh D, Sahai A, Waters B. Functional encryption: definitions and challenges. In: Theory of Cryptography. Berlin: Springer, 2011. 253–273

    Chapter  Google Scholar 

  84. Mike B, Yvo D. A secure and efficient conference key distribution system. In: Advances in Cryptology—EUROCRYPT 1994. Berlin: Springer, 1994. 275–286

    Google Scholar 

  85. Zhang Q K, Wang B L, Zhang X S, et al. Blockchain-based dynamic group key agreement protocol for ad hoc network. Chin J Electron, 2020, 29: 447–454

    Article  Google Scholar 

  86. Xu Z S, Li F, Deng H, et al. A blockchain-based authentication and dynamic group key agreement protocol. Sensors, 2020, 20: 4835–4845

    Article  Google Scholar 

  87. Teng J K, Ma H Y. Dynamic asymmetric group key agreement protocol with traitor traceability. IET Inf Secur, 2019, 13: 703–710

    Article  Google Scholar 

  88. Gan Y, Wang B, Zhuang Y, et al. An asymmetric group key agreement protocol based on attribute threshold for Internet of Things. Trans Emerging Tel Tech, 2021, 32: e4179

    Article  Google Scholar 

  89. Zhang Q K, Wang X M, Yuan J L, et al. A hierarchical group key agreement protocol using orientable attributes for cloud computing. Inf Sci, 2019, 480: 55–69

    Article  MATH  Google Scholar 

  90. Zhang L, Wu Q H, Qin B, et al. Certificateless and identity-based authenticated asymmetric group key agreement. Int J Inf Secur, 2017, 16: 559–576

    Article  Google Scholar 

  91. Chen Q N, Wu T, Hu C N, et al. An identity-based cross-domain authenticated asymmetric group key agreement. Information, 2021, 12: 112–121

    Article  Google Scholar 

  92. Gentry C, Waters B. Adaptive security in broadcast encryption systems (with short ciphertexts). In: Advances in Cryptology—EUROCRYPT 2009. Berlin: Springer, 2009. 171–188

    Chapter  MATH  Google Scholar 

  93. Wee H. Déjà Q: encore! Un petit IBE. In: Theory of Cryptography. Berlin: Springer, 2016. 237–258

    Chapter  Google Scholar 

  94. Acharya K, Dutta R. Constructing provable secure broadcast encryption scheme with dealership. J Inf Secur Appl, 2021, 58: 102736

    Google Scholar 

  95. Libert B, Paterson K G, Quaglia E A. Anonymous broadcast encryption: adaptive security and efficient constructions in the standard model. In: Public Key Cryptography—PKC 2012. Berlin: Springer, 2012. 206–224

    Chapter  Google Scholar 

  96. He K, Weng J, Liu J, et al. Anonymous identity-based broadcast encryption with chosen-ciphertext security. In: Proceedings of ACM on Asia Conference on Computer and Communications Security, 2016. 247–255

  97. Boneh D, Zhandry M. Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. Algorithmica, 2017, 79: 1233–1285

    Article  MathSciNet  MATH  Google Scholar 

  98. Abdalla M, Bellare M, Neven G. Robust encryption. J Cryptol, 2018, 31: 307–350

    Article  MathSciNet  MATH  Google Scholar 

  99. Mandal M. Privacy-preserving fully anonymous ciphertext policy attribute-based broadcast encryption with constant-size secret keys and fast decryption. J Inf Secur Appl, 2020, 55: 102666

    Google Scholar 

  100. Chen L Q, Li J G, Lu Y, et al. Adaptively secure certificate-based broadcast encryption and its application to cloud storage service. Inf Sci, 2020, 538: 273–289

    Article  MathSciNet  MATH  Google Scholar 

  101. Mishra P, Renuka P, Verma V. Identity based broadcast encryption scheme with shorter decryption keys for open networks. Wireless Pers Commun, 2020, 115: 961–969

    Article  Google Scholar 

  102. Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption. In: Proceedings of IEEE Symposium on Security and Privacy, 2007. 321–334

  103. Vipul G, Omkant P, Amit S, et al. Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2006. 89–98

  104. Cao Z F. New trends of information security—how to change people’s life style? Sci China Inf Sci, 2016, 59: 050106

    Article  Google Scholar 

  105. Liu Z, Cao Z F, Wong D S. White-box traceable ciphertext-policy attribute-based encryption supporting any monotone access structures. IEEE Trans Inform Forensic Secur, 2013, 8: 76–88

    Article  Google Scholar 

  106. Liu Z, Cao Z, Wong D S. Blackbox traceable CP-ABE: how to catch people leaking their keys by selling decryption devices on an ebay. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2013. 475–486

  107. Ning J, Cao Z, Dong X, et al. Traceable CP-ABE with short ciphertexts: how to catch people selling decryption devices on eBay efficiently. In: Computer Security—ESORICS 2016. Berlin: Springer, 2016. 276–288

    Google Scholar 

  108. Zhang K, Li H, Ma J F, et al. Efficient large-universe multi-authority ciphertext-policy attribute-based encryption with white-box traceability. Sci China Inf Sci, 2018, 61: 032102

    Article  Google Scholar 

  109. Liang X, Cao Z, Lin H, et al. Attribute based proxy re-encryption with delegating capabilities. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, 2009. 276–286

  110. Qian J, Dong X. Fully secure revocable attribute-based encryption. J Shanghai Jiaotong Univ (Sci), 2011, 16: 490–496

    Article  MATH  Google Scholar 

  111. Sahai A, Seyalioglu H, Waters H. Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Advances in Cryptology—CRYPTO 2012. Berlin: Springer, 2012. 199–217

    Chapter  Google Scholar 

  112. Yang K, Jia X. Expressive, efficient, and revocable data access control for multi-authority cloud storage. IEEE Trans Parallel Distrib Syst, 2014, 25: 1735–1744

    Article  Google Scholar 

  113. Li J, Yao W, Zhang Y, et al. Flexible and fine-grained attribute-based data storage in cloud computing. IEEE Trans Serv Comput, 2017, 10: 785–796

    Article  Google Scholar 

  114. Cui H, Deng R H, Li Y J, et al. Server-aided revocable attribute-based encryption. In: Computer Security—ESORICS 2016. Berlin: Springer, 2016. 570–587

    Chapter  Google Scholar 

  115. Qin B D, Zhao Q L, Zheng D, et al. (Dual) server-aided revocable attribute-based encryption with decryption key exposure resistance. Inf Sci, 2019, 490: 74–92

    Article  MATH  Google Scholar 

  116. Cui H, Yuen T H, Deng R H, et al. Server-aided revocable attribute-based encryption for cloud computing services. Concurr Computat Pract Exper, 2020, 32: e5680

    Article  Google Scholar 

  117. Chase M. Multi-authority attribute based encryption. In: Theory of Cryptography. Berlin: Springer, 2007. 515–534

    Chapter  Google Scholar 

  118. Zhou S L, Chen G X, Huang G J, et al. Research on multi-authority CP-ABE access control model in multicloud. China Commun, 2020, 17: 220–233

    Article  Google Scholar 

  119. Banerjee S, Roy S, Odelu V, et al. Multi-authority CP-ABE-based user access control scheme with constant-size key and ciphertext for IoT deployment. J Inf Secur Appl, 2020, 53: 102503

    Google Scholar 

  120. Zhao Q Q, Wu G F, Ma H, et al. Black-box and public traceability in multi-authority attribute based encryption. Chin J Electron, 2020, 29: 106–113

    Article  Google Scholar 

  121. Okamoto T, Takashima K. Decentralized attribute-based encryption and signatures. IEICE Trans Fundamentals, 2020, E103.A: 41–73

  122. Liang K T, Susilo W, Liu J K. Privacy-preserving ciphertext multi-sharing control for big data storage. IEEE Trans Inform Forensic Secur, 2015, 10: 1578–1589

    Article  Google Scholar 

  123. Liang K T, Susilo W. Searchable attribute-based mechanism with efficient data sharing for secure cloud storage. IEEE Trans Inform Forensic Secur, 2015, 10: 1981–1992

    Article  Google Scholar 

  124. Xu X, Zhou J, Wang X. Multi-authority proxy re-encryption based on CPABE for cloud storage systems. J Syst Eng Electron, 2016, 27: 211–223

    Google Scholar 

  125. Gorbunov S, Vaikuntanathan V, Wee H. Attribute-based encryption for circuits. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, 2015. 545–554

  126. Wang S, Zhou J, Liu J K, et al. An efficient file hierarchy attribute-based encryption scheme in cloud computing. IEEE Trans Inform Forensic Secur, 2016, 11: 1265–1277

    Article  Google Scholar 

  127. Xia Y, Chen W, Liu X, et al. Adaptive multimedia data forwarding for privacy preservation in vehicular Ad-Hoc networks. IEEE Trans Intell Transp Syst, 2017, 18: 2629–2641

    Article  Google Scholar 

  128. Cui H, Deng R H, Wang G. An attribute-based framework for secure communications in vehicular ad hoc networks. IEEE/ACM Trans Networking, 2019, 27: 721–733

    Article  Google Scholar 

  129. Liu X H, Liu Q, Peng T, et al. Dynamic access policy in cloud-based personal health record (PHR) systems. Inf Sci, 2017, 379: 62–81

    Article  Google Scholar 

  130. Athena J, Sumathy V. TBAC: tree-based access control approach for secure access of PHR in cloud. Int J Biomed Eng Technol, 2019, 29: 246–272

    Article  Google Scholar 

  131. Boneh D, Waters B. Conjunctive, subset, and range queries on encrypted data. In: Theory of Cryptography. Berlin: Springer, 2007. 535–554

    Chapter  Google Scholar 

  132. Okamoto T, Takashima K. Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption. Des Codes Cryptogr, 2015, 77: 725–771

    Article  MathSciNet  MATH  Google Scholar 

  133. Gaybullaev T, Kwon H Y, Kim T, et al. Efficient and privacy-preserving energy trading on blockchain using dual binary encoding for inner product encryption. Sensors, 2021, 21: 2024

    Article  Google Scholar 

  134. Jie C, Gay R, Wee H. Improved dual system ABE in prime-order groups via predicate encodings. In: Advances in Cryptology—EUROCRYPT 2015. Berlin: Springer, 2015. 595–624

    MATH  Google Scholar 

  135. Ling S, Nguyen K, Wang H, et al. Server-aided revocable predicate encryption: formalization and lattice-based instantiation. Comput J, 2019, 62: 49–62

    Article  MathSciNet  Google Scholar 

  136. Nandi M, Pandit T. Delegation-based conversion from CPA to CCA-secure predicate encryption. Int J Appl Cryptogr, 2020, 4: 16

    Article  MathSciNet  MATH  Google Scholar 

  137. Naveed M, Agrawal S, Prabhakaran M, et al. Controlled functional encryption. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2014. 1280–1291

  138. Ambrona M, Fiore D, Soriente C. Controlled functional encryption revisited: multi-authority extensions and efficient schemes for quadratic functions. Proc Privacy Enhancing Technol, 2021, 2021: 21–42

    Article  Google Scholar 

  139. Bitansky N, Nishimaki R, Passelégue A, et al. From cryptomania to obfustopia through secret-key functional encryption. J Cryptol, 2020, 33: 357–405

    Article  MathSciNet  MATH  Google Scholar 

  140. Lin H. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Advances in Cryptology—CRYPTO 2017. Berlin: Springer, 2017. 599–629

    Chapter  Google Scholar 

  141. Cho W, Kim J, Lee C. (In)security of concrete instantiation of Lin17’s functional encryption scheme from noisy multilinear maps. Des Codes Cryptogr, 2021, 89: 973–1016

    Article  MathSciNet  MATH  Google Scholar 

  142. Agrawal R, Kiernan J, Srikant R, et al. Order-preserving encryption for numeric data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2004. 563–574

  143. Boldyreva A, Chenette N, Lee Y, et al. Order-preserving symmetric encryption. In: Advances in Cryptology—EUROCRYPT 2009. Berlin: Springer, 2009. 224–241

    Chapter  Google Scholar 

  144. Popa R A, Li F H, Zeldovich N. An ideal-security protocol for order-preserving encoding. In: Proceedings of IEEE Symposium on Security and Privacy, 2013. 463–477

  145. Kerschbaum F. Frequency-hiding order-preserving encryption. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2015. 656–667

  146. Boneh D, Lewi K, Raykova M, et al. Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Advances in Cryptology—EUROCRYPT 2015. Berlin: Springer, 2015. 563–594

    Chapter  Google Scholar 

  147. Dyer J, Dyer M, Djemame K. Order-preserving encryption using approximate common divisors. J Inf Secur Appl, 2019, 49: 102391

    Google Scholar 

  148. Naveed M, Kamara S, Wright C V. Inference attacks on property-preserving encrypted databases. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2015. 644–655

  149. Song D X, Wagner D, Perrig A. Practical techniques for searches on encrypted data. In: Proceedings of IEEE Symposium on Security and Privacy, 2000. 44–55

  150. Boneh D, Crescenzo G D, Ostrovsky R, et al. Public key encryption with keyword search. In: Advances in Cryptology—EUROCRYPT 2004. Berlin: Springer, 2004. 506–522

    Chapter  Google Scholar 

  151. Abdalla M, Bellare M, Catalano D, et al. Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. In: Advances in Cryptology—CRYPTO 2005. Berlin: Springer, 2005. 205–222

    Chapter  Google Scholar 

  152. Xia Z, Wang X, Sun X, et al. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst, 2016, 27: 340–352

    Article  Google Scholar 

  153. Kamal A A A M, Iwamura K. Searchable encryption using secret sharing scheme that realizes direct search of encrypted documents and disjunctive search of multiple keywords. J Inf Secur Appl, 2021, 59: 102824

    Google Scholar 

  154. Wang B, Yu S, Lou W, et al. Privacy-preserving multikeyword fuzzy search over encrypted data in the cloud. In: Proceedings of IEEE Conference on Computer Communications, 2014. 2112–2120

  155. Fu Z, Wu X, Guan C, et al. Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans Inform Forensic Secur, 2016, 11: 2706–2716

    Article  Google Scholar 

  156. Strizhov M, Osman Z, Ray I. Substring position search over encrypted cloud data supporting efficient multi-user setup. Future Internet, 2016, 8: 28–35

    Article  Google Scholar 

  157. Gajek S. Dynamic symmetric searchable encryption from constrained functional encryption. In: Topics in Cryptology—CTRSA 2016. Berlin: Springer, 2016. 75–89

    Chapter  Google Scholar 

  158. Jiang X, Yu J, Yan J, et al. Enabling efficient and verifiable multi-keyword ranked search over encrypted cloud data. Inf Sci, 2017, 403–404: 22–41

    Article  MATH  Google Scholar 

  159. Liu Z, Li T, Li P, et al. Verifiable searchable encryption with aggregate keys for data sharing system. Future Gener Comput Syst, 2018, 78: 778–788

    Article  Google Scholar 

  160. Zhao F, Nishide T, Sakurai K. Fine-grained access control aware multi-user data sharing with secure keyword search. IEICE Trans Inf Syst, 2014, 97: 1790–1803

    Article  MATH  Google Scholar 

  161. Sun W, Yu S, Lou W, et al. Protecting your right: attribute-based keyword search with fine-grained owner-enforced search authorization in the cloud. In: Proceedings of IEEE Conference on Computer Communications, 2014. 226–234

  162. Tang Q. Nothing is for free: security in searching shared and encrypted data. IEEE Trans Inform Forensic Secur, 2014, 9: 1943–1952

    Article  Google Scholar 

  163. Popa R, Zeldovich N. Multi-key searchable encryption. IACR Cryptology ePrint Archive, 2013. https://eprint.iacr.org/2013/508/20130817:204810

  164. Qiu S, Liu J Q, Shi Y F, et al. Hidden policy ciphertext-policy attribute-based encryption with keyword search against keyword guessing attack. Sci China Inf Sci, 2017, 60: 052105

    Article  MathSciNet  Google Scholar 

  165. Mamta, Gupta B B. An efficient KP design framework of attribute-based searchable encryption for user level revocation in cloud. Concurr Computat Pract Exper, 2020, 32: e5291

    Article  Google Scholar 

  166. Hayata J, Ishizaka M, Sakai Y, et al. Generic construction of adaptively secure anonymous key-policy attribute-based encryption from public-key searchable encryption. IEICE Trans Fundamentals, 2020, 103: 107–113

    Article  Google Scholar 

  167. Bost R. ΣοΦοζ: forward secure searchable encryption. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2016. 1143–1154

  168. Kim K S, Kim M, Lee D, et al. Forward secure dynamic searchable symmetric encryption with efficient updates. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2017. 1449–1463

  169. Deng Z, Li K L, Li K Q, et al. A multi-user searchable encryption scheme with keyword authorization in a cloud storage. Future Gener Comput Syst, 2017, 72: 208–218

    Article  Google Scholar 

  170. Gentry C. Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 2009. 169–178

  171. Smart N P, Vercauteren F. Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Public Key Cryptography—PKC 2010. Berlin: Springer, 2010. 420–443

    Chapter  MATH  Google Scholar 

  172. Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from (standard) LWE. In: Proceedings of IEEE 52nd Annual Symposium on Foundations of Computer Science, 2011. 97–106

  173. Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) Fully homomorphic encryption without bootstrapping. ACM Trans Comput Theor, 2014, 6: 1–36

    Article  MathSciNet  MATH  Google Scholar 

  174. Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP. In: Advances in Cryptology—CRYPTO 2012. Berlin: Springer, 2012. 868–886

    Chapter  Google Scholar 

  175. Gentry C, Sahai A, Waters B. Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Proceedings of Annual Cryptology Conference. Berlin: Springer, 2013. 75–92

    MATH  Google Scholar 

  176. Alperin-Sheriff J, Peikert C. Faster bootstrapping with polynomial error. In: Advances in Cryptology—CRYPTO 2014. Berlin: Springer, 2014. 297–314

    Chapter  Google Scholar 

  177. Li Z, Ma C, Wang D. Leakage resilient leveled FHE on multiple bit message. IEEE Trans Big Data, 2021, 7: 845–858

    Google Scholar 

  178. Luo F C, Wang F Q, Wang K P, et al. Fully homomorphic encryption based on the ring learning with rounding problem. IET Inf Secur, 2019, 13: 639–648

    Article  Google Scholar 

  179. Amuthan A, Sendhil R. Hybrid GSW and DM based fully homomorphic encryption scheme for handling false data injection attacks under privacy preserving data aggregation in fog computing. J Ambient Intell Human Comput, 2020, 11: 5217–5231

    Article  Google Scholar 

  180. van Dijk M, Gentry C, Halevi S. Fully homomorphic encryption over the integers. In: Advances in Cryptology— EUROCRYPT 2010. Berlin: Springer, 2010. 24–43

    Chapter  Google Scholar 

  181. Cheon J H, Coron J S, Kim J, et al. Batch fully homomorphic encryption over the integers. In: Advances in Cryptology—EUROCRYPT 2013. Berlin: Springer, 2013. 315–335

    Chapter  Google Scholar 

  182. Cheon J H, Stehlé D. Fully homomophic encryption over the integers revisited. In: Advances in Cryptology—EUROCRYPT 2015. Berlin: Springer, 2015. 513–536

    Chapter  Google Scholar 

  183. Benarroch D, Brakerski Z, Lepoint T. FHE over the integers: decomposed and batched in the post-quantum regime. In: Public-Key Cryptography—PKC 2017. Berlin: Springer, 2017. 271–301

    Chapter  Google Scholar 

  184. Aung K M M, Lee H T, Tan B H M, et al. Fully homomorphic encryption over the integers for non-binary plaintexts without the sparse subset sum problem. Theor Comput Sci, 2019, 771: 49–70

    Article  MathSciNet  MATH  Google Scholar 

  185. Dyer J, Dyer M, Xu J. Practical homomorphic encryption over the integers for secure computation in the cloud. Int J Inf Secur, 2019, 18: 549–579

    Article  MATH  Google Scholar 

  186. Chillotti I, Gama N, Georgieva M, et al. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Advances in Cryptology—ASIACRYPT 2017. Berlin: Springer, 2017. 377–408

    Chapter  Google Scholar 

  187. Dorüz Y, Hoffstein J, Pipher J, et al. Fully homomorphic encryption from the finite field isomorphism problem. In: Public-Key Cryptography—PKC 2018. Berlin: Springer, 2018. 125–155

    Chapter  Google Scholar 

  188. Ran C, Raghuraman S, Richelson S, et al. Chosen-ciphertext secure fully homomorphic encryption. In: Public-Key Cryptography—PKC 2017. Berlin: Springer, 2017. 213–240

    Google Scholar 

  189. Li Z, Galbraith S D, Ma C. Preventing adaptive key recovery attacks on the GSW levelled homomorphic encryption scheme. In: Provable Security. Berlin: Springer, 2016. 373–383

    Google Scholar 

  190. Halevi S, Shoup V. Faster homomorphic linear transformations in HElib. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2018. 93–120

    MATH  Google Scholar 

  191. Zhou J, Choo K K R, Cao Z, et al. PVOPM: verifiable privacy-preserving pattern matching with efficient outsourcing in the malicious setting. IEEE Trans Dependable Secure Comput, 2019. doi: https://doi.org/10.1109/TDSC.2019.2947436

  192. Boneh D, Gennaro R, Goldfeder S, et al. Threshold cryptosystems from threshold fully homomorphic encryption. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2018. 565–596

    MATH  Google Scholar 

  193. Lu Y, Zhou T, Tian Y, et al. Web-based privacy-preserving multicenter medical data analysis tools via threshold homomorphic encryption: design and development study. J Med Internet Res, 2020, 22: e22555

    Article  Google Scholar 

  194. Adriana L A, Tromer E, Vaikuntanathan V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, 2012. 1219–1234

  195. Kim E, Lee H S, Park J. Towards round-optimal secure multiparty computations: multikey FHE without a CRS. Int J Found Comput Sci, 2020, 31: 157–174

    Article  MathSciNet  MATH  Google Scholar 

  196. Che X L, Zhou T P, Li N B, et al. Modified multi-key fully homomorphic encryption based on NTRU cryptosystem without key-switching. Tinshhua Sci Technol, 2020, 25: 564–578

    Article  Google Scholar 

  197. Yamada S. Asymptotically compact adaptively secure lattice IBEs and verifiable random functions via generalized partitioning techniques. In: Advances in Cryptology—CRYPTO 2017. Berlin: Springer, 2017. 161–193

    Chapter  Google Scholar 

  198. Clear M, Mcgoldrick C. Additively homomorphic IBE from higher residuosity. In: Public-Key Cryptography—PKC 2019. Berlin: Springer, 2019. 496–515

    Chapter  Google Scholar 

  199. Brakerski Z, Cash D, Tsabary R, et al. Targeted homomorphic attribute-based encryption. In: Theory of Cryptography. Berlin: Springer, 2016. 330–360

    Chapter  Google Scholar 

  200. Agrawal S. Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Advances in Cryptology—EUROCRYPT 2019. Berlin: Springer, 2019. 191–225

    Chapter  Google Scholar 

  201. Jain A, Lin H, Christian M, et al. How to leverage hardness of constant-degree expanding polynomials overaRto build iO. In: Advances in Cryptology—EUROCRYPT 2019. Berlin: Springer, 2019. 251–281

    Chapter  Google Scholar 

  202. Boneh D, Lewi K, Wu D J. Constraining pseudorandom functions privately. In: Public-Key Cryptography—PKC 2017. Berlin: Springer, 2017. 494–524

    Chapter  Google Scholar 

  203. Brakerski Z, Döttling N, Garg S, et al. Candidate iO from homomorphic encryption schemes. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2020. 79–109

    MATH  Google Scholar 

  204. Yao A C. Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), Chicago, 1982. 160–164

  205. Goldreich O. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge: Cambridge University Press, 2009

    MATH  Google Scholar 

  206. Rabin M O. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint Archive, 2005. http://eprint.iacr.org/2005/187

  207. Kumar M, Praveen I. A fully simulatable oblivious transfer scheme using vector decomposition. In: Advances in Intelligent Systems & Computing. New Delhi: Springer, 2015. 309: 131–137

    Google Scholar 

  208. Peikert C, Vaikuntanathan V, Waters B. A framework for efficient and composable oblivious transfer. In: Advances in Cryptology—CRYPTO 2008. Berlin: Springer, 2008. 554–571

    Chapter  Google Scholar 

  209. Guo F, Mu Y, Susilo W. Subset membership encryption and its applications to oblivious transfer. IEEE Trans Inform Forensic Secur, 2014, 9: 1098–1107

    Article  Google Scholar 

  210. Dttling N, Garg S, Hajiabadi M, et al. Two-round oblivious transfer from CDH or LPN. In: Advances in Cryptology—EUROCRYPT 2020. Berlin: Springer, 2020. 119–135

    Google Scholar 

  211. Goyal V, Jain A, Jin Z, et al. Statistical zaps and new oblivious transfer protocols. In: Advances in Cryptology—EUROCRYPT 2020. Berlin: Springer, 2020. 235–270

    Google Scholar 

  212. Orrú M, Orsini E, Scholl P. Actively secure 1-out-of-N OT extension with application to private set intersection. In: Topics in Cryptology—CT-RSA 2017. Berlin: Springer, 2017. 381–396

    Chapter  Google Scholar 

  213. Patra A, Sarkar P, Suresh A. Fast actively secure OT extension for short secrets. In: Proceedings of Network and Distributed System Symposium, 2017. 131–154

  214. Mi B, Huang D, Wan S, et al. A post-quantum light weight 1-out-n oblivious transfer protocol. Comput Electrical Eng, 2019, 75: 90–100

    Article  Google Scholar 

  215. Yao C C. How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, 1986. 162–167

  216. Bellare M, Hoang V T, Rogaway P. Foundations of garbled circuits. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2012. 784–796

  217. Hemenway B, Jafargholi Z, Ostrovsky R, et al. Adaptively secure garbled circuits from one-way functions. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2016. 149–178

    MATH  Google Scholar 

  218. Jafargholi Z, Scafuro A, Wichs D. Adaptively indistinguishable garbled circuits. In: Theory of Cryptography. Berlin: Springer, 2017. 40–71

    Chapter  Google Scholar 

  219. Zahur S, Rosulek M, Evans D. Two halves make a whole. In: Advances in Cryptology—EUROCRYPT 2015. Berlin: Springer, 2015. 220–250

    Chapter  MATH  Google Scholar 

  220. Ball M, Malkin T, Rosulek M. Garbling gadgets for Boolean and arithmetic circuits share on. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2016. 565–577

  221. Wang X A, Xhafa F, Ma J, et al. Reusable garbled gates for new fully homomorphic encryption service. Int J Web Grid Serv, 2017, 13: 25–38

    Article  Google Scholar 

  222. Alam M, Emmanuel N, Khan T, et al. Secure policy execution using reusable garbled circuit in the cloud. Future Gener Comput Syst, 2018, 87: 488–501

    Article  Google Scholar 

  223. Innocent A A T, Sangeeta K, Prakash G. Universal gates on garbled circuit construction. Concurr Computat Pract Exper, 2019, 22: e5236

    Article  Google Scholar 

  224. Mohassel P, Rosulek M. Non-interactive secure 2PC in the offline/online and batch settings. In: Advances in Cryptology—EUROCRYPT 2017. Berlin: Springer, 2017. 425–455

    Chapter  MATH  Google Scholar 

  225. Xiao W, Ranellucci S, Katz J. Authenticated garbling and efficient maliciously secure two-party computation. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2017. 21–37

  226. Katz J, Ranellucci S, Rosulek M, et al. Optimizing authenticated garbling for faster secure two-party computation. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2018. 365–391

    MATH  Google Scholar 

  227. Patra A, Ravi D. On the exact round complexity of secure three-party computation. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2018. 425–458

    MATH  Google Scholar 

  228. Hastings M, Hemenway B, Noble D, et al. SoK: general purpose compilers for secure multi-party computation. In: Proceedings of IEEE Symposium on Security and Privacy, 2019. 1220–1237

  229. Katz J, Ostrovsky R. Round-optimal secure two-party computation. In: Advances in Cryptology—CRYPTO 2004. Berlin: Springer, 2004. 335–354

    Chapter  Google Scholar 

  230. Jarecki S, Shmatikov V. Efficient two-party secure computation on committed inputs. In: Advances in Cryptology—EUROCRYPT 2007. Berlin: Springer, 2007. 97–114

    Chapter  Google Scholar 

  231. Nielsen J B. MiniLEGO: efficient secure two-party computation from general assumptions. In: Advances in Cryptology—EUROCRYPT 2013. Berlin: Springer, 2013. 537–556

    Google Scholar 

  232. Nielsen J B, Nordholt P S, Orlandi C, et al. A new approach to practical active-secure two-party computation. In: Advances in Cryptology—CRYPTO 2012. Berlin: Springer, 2012. 681–700

    Chapter  Google Scholar 

  233. Lindell Y. Fast cut-and-choose based protocols for malicious and covert adversaries. In: Advances in Cryptology—CRYPTO 2013. Berlin: Springer, 2013. 1–17

    Google Scholar 

  234. Wei X C, Xu L, Zhao M H, et al. Secure extended wildcard pattern matching protocol from cut-and-choose oblivious transfer. Inf Sci, 2020, 529: 132–140

    Article  MathSciNet  MATH  Google Scholar 

  235. Bendlin R, Damgård I, Orlandi C, et al. Semi-homomorphic encryption and multiparty computation. In: Advances in Cryptology—EUROCRYPT 2011. Berlin: Springer, 2011. 169–188

    Chapter  Google Scholar 

  236. Damgrd I, Pastro V, Smart N P, et al. Multiparty computation from somewhat homomorphic encryption. In: Advances in Cryptology—CRYPTO 2012. Berlin: Springer, 2012. 643–662

    Chapter  Google Scholar 

  237. Asharov G, Jain A, Adriana L A, et al. Multiparty computation with low communication, computation and interaction via threshold FHE. In: Advances in Cryptology—EUROCRYPT 2012. Berlin: Springer, 2012. 483–501

    Chapter  Google Scholar 

  238. Aliasgari M, Blanton M, Bayatbabolghani F. Secure computation of hidden Markov models and secure floating-point arithmetic in the malicious model. Int J Inf Secur, 2017, 16: 577–601

    Article  Google Scholar 

  239. Gordon S D, Liu F H, Shi E. Constant-round MPC with fairness and guarantee of output delivery. In: Proceedings of Annual International Cryptology Conference. Berlin: Springer, 2015. 371–400

    Google Scholar 

  240. Chongchitmate W, Ostrovsky R. Circuit-private multi-key FHE. In: Public-Key Cryptography—PKC 2017. Berlin: Springer, 2017. 241–270

    Chapter  MATH  Google Scholar 

  241. Chen H, Dai W, Kim M. Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2019. 395–412

  242. Chen H, Chillotti I, Song Y. Multi-key homomophic encryption from TFHE. In: Advances in Cryptology—ASIACRYPT 2019. Berlin: Springer, 2019. 446–472

    Chapter  Google Scholar 

  243. Kim E, Lee H S, Park J. Towards round-optimal secure multiparty computations: multikey FHE without a CRS. In: Proceedings of Australasian Conference on Information Security and Privacy. Berlin: Springer, 2018. 101–113

    MATH  Google Scholar 

  244. Brakerski Z, Halevi S, Polychroniadou A. Four round secure computation without setup. In: Theory of Cryptography. Berlin: Springer, 2017. 678–710

    Google Scholar 

  245. Goyal R. Quantum multi-key homomorphic encryption for polynomial-sized circuits. IACR Cryptology ePrint Archive, 2018. https://eprint.iacr.org/2018/443

  246. Zhou J, Cao Z, Qin Z, et al. LPPA: lightweight privacy-preserving authentication from efficient multi-key secure outsourced computation for location-based services in VANETs. IEEE Trans Inform Forensic Secur, 2020, 15: 420–434

    Article  Google Scholar 

  247. Lin H Y, Tzeng W G. An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Applied Cryptography and Network Security. Berlin: Springer, 2005. 456–466

    Chapter  Google Scholar 

  248. Li S D, Guo Y M, Zhou S F, et al. Efficient protocols for the general millionaires’ problem. Chin J Electron, 2017, 26: 696–702

    Article  Google Scholar 

  249. Liu M, Nanda P, Zhang X. Asymmetric commutative encryption scheme based efficient solution to the millionaires’ problem. In: Proceedings of the 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and the 12th IEEE International Conference on Big Data Science and Engineering Combined Conference, 2018. 990–995

  250. Liu X, Choo K K R, Deng R H, et al. Efficient and privacy-preserving outsourced calculation of rational numbers. IEEE Trans Dependable Secure Comput, 2018, 15: 27–39

    Article  Google Scholar 

  251. Hamada K, Kikuchi R, Dai I, et al. Practically efficient multi-party sorting protocols from comparison sort algorithms. In: Information Security and Cryptology—ICISC 2012. Berlin: Springer, 2012. 202–216

    Google Scholar 

  252. Marszaek Z. Parallel fast sort algorithm for secure multiparty computation. J Universal Comput Sci, 2018, 24: 488–514

    MathSciNet  Google Scholar 

  253. Atallah M J, Du W. Secure multi-party computational geometry. In: Proceedings of the 7th International Workshop on Algorithms and Data Structures (WADS 2001). Berlin: Springer, 2001. 165–179

    MATH  Google Scholar 

  254. Qin J, Duan H, Zhao H, et al. A new Lagrange solution to the privacy-preserving general geometric intersection problem. J Network Comput Appl, 2014, 46: 94–99

    Article  Google Scholar 

  255. Liu W J, Xu Y, Yang J C N, et al. Privacy-preserving quantum two-party geometric intersection. Comput Mater Continua, 2019, 60: 1237–1250

    Article  Google Scholar 

  256. Abadi A, Terzis S, Dong C. O-PSI: delegated private set intersection on outsourced datasets. In: ICT Systems Security and Privacy Protection. Berlin: Springer, 2005. 3–17

    Google Scholar 

  257. Pinkas B, Schneider T, Zohner M. Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Security Symposium, 2014. 797–812

  258. Freedman M J, Hazay C, Nissim K, et al. Efficient set intersection with simulation-based security. J Cryptol, 2016, 29: 115–155

    Article  MathSciNet  MATH  Google Scholar 

  259. Hirofumi M, Noritaka S, Hiromi M. A proposal of profit sharing method for secure multiparty computation. Int J Innovative Comput Inform Control, 2018, 14: 727–735

    Google Scholar 

  260. Juvekar C, Vaikuntanathan V, Chandrakasan A. Gazelle: a low latency framework for secure neural network inference. In: Proceedings of the 27th USENIX Conference on Security Symposium, 2018. 1651–1668

  261. Gu B, Sheng V S, Tay K Y, et al. Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learning Syst, 2015, 26: 1403–1416

    Article  MathSciNet  Google Scholar 

  262. Goldwasser S, Kalai Y T, Rothblum G N. Delegating computation: interactive proofs for muggles. J ACM, 2015, 62: 1–64

    Article  MathSciNet  MATH  Google Scholar 

  263. Zheng Y, Cui H, Wang C, et al. Privacy-preserving image denoising from external cloud databases. IEEE Trans Inform Forensic Secur, 2017, 12: 1285–1298

    Article  Google Scholar 

  264. McMahan H B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017. 1273–1282

  265. Yang Q, Liu Y, Chen T, et al. Federated machine learning: concept and applications. ACM Trans Intell Syst Technol, 2019, 10: 1–19

    Article  Google Scholar 

  266. Li T, Sahu A K, Talwalkar A, et al. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag, 2020, 37: 50–60

    Google Scholar 

  267. Malkhi D, Nisan N, Pinkas B, et al. Fairplay: a secure two-party computation system. In: Proceedings of the 13th Conference on USENIX Security Symposium, 2004. 20–59

  268. Gueron S, Lindell Y, Nof A, et al. Fast garbling of circuits under standard assumptions. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2015. 5670–578

  269. Zhang Y, Steele A, Blanton M. PICCO: a general-purpose compiler for private distributed computation. In: Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, 2013. 813–826

  270. Rastogi A, Hammer M A, Hicks M. Wysteria: a programming language for generic, mixed-mode multiparty computations. In: Proceedings of IEEE Symposium on Security and Privacy, 2014. 655–670

  271. Wang X, Malozemoff A J, Katz J, et al. EMP-toolkit: efficient multiparty computation toolkit. 2016. https://github.com/emp-toolkit

  272. Songhori E M, Hussain S U, Sadeghi A R, et al. TinyGarble: highly compressed and scalable sequential garbled circuits. In: Proceedings of IEEE Symposium on Security and Privacy, 2015. 411–428

  273. Zahur S, Evans D. Obliv-C: a language for extensible data-oblivious computation. IACR Cryptology ePrint Archive 2015/1153, 2015

  274. Liu C, Xiao S W, Nayak K, et al. ObliVM: a programming framework for secure computation. In: Proceedings of IEEE Symposium on Security and Privacy, 2015. 359–376

  275. Mood B, Gupta D, Carter H, et al. Frigate: a validated, extensible, and efficient compiler and interpreter for secure computation. In: Proceedings of IEEE European Symposium on Security and Privacy, 2016. 112–127

  276. Mihaela I, Kreuter B. On deploying secure computing commercially: private intersection-sum protocols and their business applications. IACR Cryptology ePrint Archive, 2019. https://eprint.iacr.org/2019/723.pdf

  277. Cheon J H, Kim M, Kim M. Optimized search-and-compute circuits and their application to query evaluation on encrypted data. IEEE Trans Inform Forensic Secur, 2016, 11: 188–199

    Article  Google Scholar 

  278. Garg S, Gentry C, Halevi S, et al. Candidate indistinguishability obfuscation and functional encryption for all circuits. sIn: Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 2013. 40–49

  279. Jain A, Lin H, Sahai A. Indistinguishability obfuscation from well-founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021. 60–73

  280. Liu L B, Luo A, Li G H, et al. Jintide®: a hardware security enhanced server CPU with Xeon®Cores under runtime surveillance by an In-Package dynamically reconfigurable processor. In: Proceedings of IEEE Hot Chips 31 Symposium (HCS), 2019. 1–25

Download references

Acknowledgements

This work was supported by National Key Research and Development Project (Grant No. 2020YFA0712300), National Natural Science Foundation of China (Grants Nos. 61772548, 61632012), Foundation of Science and Technology on Information Assurance Laboratory (Grant No. KJ-17-001), and Peng Cheng Laboratory Project of Guangdong Province (Grant No. PCL2018KP004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqi Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zheng, J., Cao, Z. et al. A survey on cryptographic techniques for protecting big data security: present and forthcoming. Sci. China Inf. Sci. 65, 201301 (2022). https://doi.org/10.1007/s11432-021-3393-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3393-x

Keywords

Navigation