Skip to main content
Log in

Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Two-dimensional van der Waals heterostructures (2D vdW HSs) can be constructed by stacking different 2D materials together in nearly endless ways, and have significantly enriched the 2D materials family. They have attracted intense research attention effort, due to their exotic physical properties and intriguing device performance, often beyond those found in their constituent 2D materials. Here we review research progresses in this emerging 2D system, including fabrication methods, material properties, device applications, and offer our perspectives on emerging research opportunities in this highly active area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  2. Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus. Appl Phys Lett, 2014, 104: 103106

    Article  Google Scholar 

  3. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699–712

    Article  Google Scholar 

  4. Corso M, Auwärter W, Muntwiler M, et al. Boron nitride nanomesh. Science, 2004, 303: 217–220

    Article  Google Scholar 

  5. Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273

    Article  Google Scholar 

  6. Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269

    Article  Google Scholar 

  7. Tan C, Lee J, Jung S G, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat Commun, 2018, 9: 1554

    Article  Google Scholar 

  8. Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576: 416–422

    Article  Google Scholar 

  9. Zatko V, Dubois S M M, Godel F, et al. Band-gap landscape engineering in large-scale 2D semiconductor van der Waals heterostructures. ACS Nano, 2021, 15: 7279–7289

    Article  Google Scholar 

  10. Yang W, Kawai H, Bosman M, et al. Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10: 22927–22936

    Article  Google Scholar 

  11. Heilmann M, Bashouti M, Riechert H, et al. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene. 2D Mater, 2018, 5: 025004

    Article  Google Scholar 

  12. Ci L, Song L, Jin C, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010, 9: 430–435

    Article  Google Scholar 

  13. Liu Z, Song L, Zhao S, et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett, 2011, 11: 2032–2037

    Article  Google Scholar 

  14. Chang C K, Kataria S, Kuo C C, et al. Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano, 2013, 7: 1333–1341

    Article  Google Scholar 

  15. Sutter P, Cortes R, Lahiri J, et al. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett, 2012, 12: 4869–4874

    Article  Google Scholar 

  16. Liu Z, Ma L, Shi G, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol, 2013, 8: 119–124

    Article  Google Scholar 

  17. Liu L, Park J, Siegel D A, et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science, 2014, 343: 163–167

    Article  Google Scholar 

  18. Gong Y, Shi G, Zhang Z, et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat Commun, 2014, 5: 3193

    Article  Google Scholar 

  19. Gao T, Song X, Du H, et al. Temperature-triggered chemical switching growth of in-plane and vertically stacked grapheneboron nitride heterostructures. Nat Commun, 2015, 6: 6835

    Article  Google Scholar 

  20. Tang S, Wang H, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat Commun, 2015, 6: 6499

    Article  Google Scholar 

  21. Li Q, Zhao Z, Yan B, et al. Nickelocene-precursor-facilitated fast growth of graphene/h-BN vertical heterostructures and its applications in OLEDs. Adv Mater, 2017, 29: 1701325

    Article  Google Scholar 

  22. Zhang C, Zhao S, Jin C, et al. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat Commun, 2015, 6: 6519

    Article  Google Scholar 

  23. Duan X, Wang C, Shaw J C, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol, 2014, 9: 1024–1030

    Article  Google Scholar 

  24. Huang C, Wu S, Sanchez A M, et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater, 2014, 13: 1096–1101

    Article  Google Scholar 

  25. Gong Y, Lei S, Ye G, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett, 2015, 15: 6135–6141

    Article  Google Scholar 

  26. Xue Y, Zhang Y, Liu Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10: 573–580

    Article  Google Scholar 

  27. Yang T, Zheng B, Wang Z, et al. van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat Commun, 2017, 8: 1906

    Article  Google Scholar 

  28. Lee J, Pak S, Lee Y W, et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano, 2019, 13: 13047–13055

    Article  Google Scholar 

  29. Wu X, Li H, Liu H, et al. Spatially composition-modulated two-dimensional WS2xSe2(1−x) nanosheets. Nanoscale, 2017, 9: 4707–4712

    Article  Google Scholar 

  30. Zheng B, Ma C, Li D, et al. Band alignment engineering in two-dimensional lateral heterostructures. J Am Chem Soc, 2018, 140: 11193–11197

    Article  Google Scholar 

  31. Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13: 1135–1142

    Article  Google Scholar 

  32. Shi J, Tong R, Zhou X, et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv Mater, 2016, 28: 10664–10672

    Article  Google Scholar 

  33. Yoo Y, Degregorio Z P, Johns J E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J Am Chem Soc, 2015, 137: 14281–14287

    Article  Google Scholar 

  34. Sahoo P K, Memaran S, Xin Y, et al. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature, 2018, 553: 63–67

    Article  Google Scholar 

  35. Zhang Z, Chen P, Duan X, et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 2017, 357: 788–792

    Article  Google Scholar 

  36. Kobayashi Y, Yoshida S, Maruyama M, et al. Continuous heteroepitaxy of two-dimensional heterostructures based on layered chalcogenides. ACS Nano, 2019, 13: 7527–7535

    Article  Google Scholar 

  37. Xie S, Tu L, Han Y, et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science, 2018, 359: 1131–1136

    Article  Google Scholar 

  38. Zhao B, Wan Z, Liu Y, et al. High-order superlattices by rolling up van der Waals heterostructures. Nature, 2021, 591: 385–390

    Article  Google Scholar 

  39. Jin G, Lee C S, Okello O F N, et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat Nanotechnol, 2021, 16: 1092–1098

    Article  Google Scholar 

  40. Luican A, Li G, Reina A, et al. Single-layer behavior and its breakdown in twisted graphene layers. Phys Rev Lett, 2011, 106: 126802

    Article  Google Scholar 

  41. Lu C C, Lin Y C, Liu Z, et al. Twisting bilayer graphene superlattices. ACS Nano, 2013, 7: 2587–2594

    Article  Google Scholar 

  42. Liu K, Zhang L, Cao T, et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat Commun, 2014, 5: 4966

    Article  Google Scholar 

  43. Zheng S, Sun L, Zhou X, et al. Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv Opt Mater, 2015, 3: 1600–1605

    Article  Google Scholar 

  44. Sun L, Wang Z, Wang Y, et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat Commun, 2021, 12: 2391

    Article  Google Scholar 

  45. Reina A, Son H, Jiao L, et al. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J Phys Chem C, 2008, 112: 17741–17744

    Article  Google Scholar 

  46. Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5: 722–726

    Article  Google Scholar 

  47. Leon J A, Mamani N C, Rahim A, et al. Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices. Graphene, 2014, 03: 25–35

    Article  Google Scholar 

  48. Zomer P J, Dash S P, Tombros N, et al. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl Phys Lett, 2011, 99: 232104

    Article  Google Scholar 

  49. Zomer P J, Guimarães M H D, Brant J C, et al. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl Phys Lett, 2014, 105: 013101

    Article  Google Scholar 

  50. Wang J I J, Yang Y, Chen Y A, et al. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett, 2015, 15: 1898–1903

    Article  Google Scholar 

  51. Huang Z, Alharbi A, Mayer W, et al. Versatile construction of van der Waals heterostructures using a dual-function polymeric film. Nat Commun, 2020, 11: 3029

    Article  Google Scholar 

  52. Pizzocchero F, Gammelgaard L, Jessen B S, et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat Commun, 2016, 7: 11894

    Article  Google Scholar 

  53. Purdie D G, Pugno N M, Taniguchi T, et al. Cleaning interfaces in layered materials heterostructures. Nat Commun, 2018, 9: 5387

    Article  Google Scholar 

  54. Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry vis-coelastic stamping. 2D Mater, 2014, 1: 011002

    Article  Google Scholar 

  55. Yang R, Zheng X, Wang Z, et al. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J Vacuum Sci Tech B, 2014, 32: 061203

    Article  Google Scholar 

  56. Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556: 43–50

    Article  Google Scholar 

  57. Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556: 80–84

    Article  Google Scholar 

  58. Xu Y, Liu S, Rhodes D A, et al. Correlated insulating states at fractional fillings of Moiré superlattices. Nature, 2020, 587: 214–218

    Article  Google Scholar 

  59. Liu E, Barré E, van Baren J, et al. Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594: 46–50

    Article  Google Scholar 

  60. Chen X D, Xin W, Jiang W S, et al. High-precision twist-controlled bilayer and trilayer graphene. Adv Mater, 2016, 28: 2563–2570

    Article  Google Scholar 

  61. Carozo V, Almeida C M, Ferreira E H M, et al. Raman signature of graphene superlattices. Nano Lett, 2011, 11: 4527–4534

    Article  Google Scholar 

  62. Kim K, Yankowitz M, Fallahazad B, et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett, 2016, 16: 1989–1995

    Article  Google Scholar 

  63. Wang K, Huang B, Tian M, et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 2016, 10: 6612–6622

    Article  Google Scholar 

  64. Xia J, Yan J, Wang Z, et al. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nat Phys, 2021, 17: 92–98

    Article  Google Scholar 

  65. Fu X, Li F, Lin J F, et al. Coupling-assisted renormalization of excitons and vibrations in compressed MoSe2-WSe2 heterostructure. J Phys Chem C, 2018, 122: 5820–5828

    Article  Google Scholar 

  66. Lee Y Y, Hu Z, Wang X, et al. Progressive micromodulation of interlayer coupling in stacked WS2/WSe2 heterobilayers tailored by a focused laser beam. ACS Appl Mater Interf, 2018, 10: 37396–37406

    Article  Google Scholar 

  67. Baranowski M, Surrente A, Klopotowski L, et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett, 2017, 17: 6360–6365

    Article  Google Scholar 

  68. Rivera P, Schaibley J R, Jones A M, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun, 2015, 6: 6242

    Article  Google Scholar 

  69. Li Z, Lu X, Leon D F C, et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15: 1539–1547

    Article  Google Scholar 

  70. Li Y, Xu C Y, Qin J K, et al. Tuning the excitonic states in MoS2/graphene van der Waals heterostructures via electrochemical gating. Adv Funct Mater, 2016, 26: 293–302

    Article  Google Scholar 

  71. Unuchek D, Ciarrocchi A, Avsar A, et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560: 340–344

    Article  Google Scholar 

  72. Mouri S, Zhang W, Kozawa D, et al. Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers. Nanoscale, 2017, 9: 6674–6679

    Article  Google Scholar 

  73. Meng Y, Wang T, Jin C, et al. Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nat Commun, 2020, 11: 2640

    Article  Google Scholar 

  74. Miller B, Steinhoff A, Pano B, et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett, 2017, 17: 5229–5237

    Article  Google Scholar 

  75. Kremser M, Brotons-Gisbert M, Knörzer J, et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Mater Appl, 2020, 4: 8

    Article  Google Scholar 

  76. Hsu W T, Lin B H, Lu L S, et al. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci Adv, 2019, 5: eaax7407

    Article  Google Scholar 

  77. Merkl P, Mooshammer F, Steinleitner P, et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat Mater, 2019, 18: 691–696

    Article  Google Scholar 

  78. Kravtsov V, Liubomirov A D, Cherbunin R V, et al. Spin-valley dynamics in alloy-based transition metal dichalcogenide heterobilayers. 2D Mater, 2021, 8: 025011

    Article  Google Scholar 

  79. Nagler P, Ballottin M V, Mitioglu A A, et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat Commun, 2017, 8: 1551

    Article  Google Scholar 

  80. Cho C, Wong J, Taqieddin A, et al. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett, 2021, 21: 3956–3964

    Article  Google Scholar 

  81. Wang F, Wang J, Guo S, et al. Tuning coupling behavior of stacked heterostructures based on MoS2, WS2 and WSe2. Sci Rep, 2017, 7: 44712

    Article  Google Scholar 

  82. Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci USA, 2014, 111: 6198–6202

    Article  Google Scholar 

  83. Jin C, Regan E C, Yan A, et al. Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567: 76–80

    Article  Google Scholar 

  84. Zhang L, Wu F, Hou S, et al. van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591: 61–65

    Article  Google Scholar 

  85. Hong X, Kim J, Shi S F, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol, 2014, 9: 682–686

    Article  Google Scholar 

  86. He J, Kumar N, Bellus M Z, et al. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures. Nat Commun, 2014, 5: 5622

    Article  Google Scholar 

  87. Zhang X, He D, Yi L, et al. Electron dynamics in MoS2-graphite heterostructures. Nanoscale, 2017, 9: 14533–14539

    Article  Google Scholar 

  88. Peng B, Yu G, Liu X, et al. Ultrafast charge transfer in MoS2/WSe2 p-n heterojunction. 2D Mater, 2016, 3: 025020

    Article  Google Scholar 

  89. Chen H, Wen X, Zhang J, et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat Commun, 2016, 7: 12512

    Article  Google Scholar 

  90. Quan J, Linhart L, Lin M L, et al. Phonon renormalization in reconstructed MoS2 Moiré superlattices. Nat Mater, 2021, 20: 1100–1105

    Article  Google Scholar 

  91. Leng Y C, Lin M L, Zhou Y, et al. Intrinsic effect of interfacial coupling on the high-frequency intralayer modes in twisted multilayer MoTe2. Nanoscale, 2021, 13: 9732–9739

    Article  Google Scholar 

  92. Ge M, Su Y, Wang H, et al. Interface depended electronic and magnetic properties of vertical CrI3/WSe2 heterostructures. RSC Adv, 2019, 9: 14766–14771

    Article  Google Scholar 

  93. Hidalgo-Sacoto R, Gonzalez R I, Vogel E E, et al. Magnon valley Hall effect in CrI3-based van der Waals heterostructures. Phys Rev B, 2020, 101: 205425

    Article  Google Scholar 

  94. Zhang H, Yang W, Ning Y, et al. Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Phys Rev B, 2020, 101: 205404

    Article  Google Scholar 

  95. Rahman S, Liu B, Wang B, et al. Giant photoluminescence enhancement and resonant charge transfer in atomically thin two-dimensional Cr2Ge2Te6/WS2 heterostructures. ACS Appl Mater Interf, 2021, 13: 7423–7433

    Article  Google Scholar 

  96. Zollner K, Junior P E F, Fabian J. Proximity exchange effects in MoSe2 and WSe2 heterostructures with CrI3: twist angle, layer, and gate dependence. Phys Rev B, 2019, 100: 085128

    Article  Google Scholar 

  97. Zhong D, Seyler K L, Linpeng X, et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat Nanotechnol, 2020, 15: 187–191

    Article  Google Scholar 

  98. Zhang X X, Li L, Weber D, et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat Mater, 2020, 19: 838–842

    Article  Google Scholar 

  99. Zhong D, Seyler K L, Linpeng X, et al. van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv, 2017, 3: e1603113

    Article  Google Scholar 

  100. Mukherjee A, Shayan K, Li L, et al. Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat Commun, 2020, 11: 5502

    Article  Google Scholar 

  101. Lyons T P, Gillard D, Molina-Sánchez A, et al. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. Nat Commun, 2020, 11: 6021

    Article  Google Scholar 

  102. Seyler K L, Zhong D, Huang B, et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 2018, 18: 3823–3828

    Article  Google Scholar 

  103. Lin C, Li Y, Wei Q, et al. Enhanced valley splitting of transition-metal dichalcogenide by vacancies in robust ferromagnetic insulating chromium trihalides. ACS Appl Mater Interf, 2019, 11: 18858–18864

    Article  Google Scholar 

  104. Sun Y Y, Shang L, Ju W, et al. Tuning valley polarization in two-dimensional ferromagnetic heterostructures. J Mater Chem C, 2019, 7: 14932–14937

    Article  Google Scholar 

  105. Subhan F, Hong J. Large valley splitting and enhancement of curie temperature in a two-dimensional VI3/CrI3 heterostructure. J Phys Chem C, 2020, 124: 7156–7162

    Article  Google Scholar 

  106. Li L, Jiang S, Wang Z, et al. Electrical switching of valley polarization in monolayer semiconductors. Phys Rev Mater, 2020, 4: 104005

    Article  Google Scholar 

  107. Ciorciaro L, Kroner M, Watanabe K, et al. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure. Phys Rev Lett, 2020, 124: 197401

    Article  Google Scholar 

  108. Xie J, Jia L, Shi H, et al. Electric field mediated large valley splitting in the van der Waals heterostructure WSe2/CrI3. Jpn J Appl Phys, 2019, 58: 010906

    Article  Google Scholar 

  109. Zhang Z, Ni X, Huang H, et al. Valley splitting in the van der Waals heterostructure WSe2/CrI3: the role of atom superposition. Phys Rev B, 2019, 99: 115441

    Article  Google Scholar 

  110. Hu T, Zhao G, Gao H, et al. Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect. Phys Rev B, 2020, 101: 125401

    Article  Google Scholar 

  111. Behera S K, Bora M, Chowdhury S S P, et al. Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures. Phys Chem Chem Phys, 2019, 21: 25788–25796

    Article  Google Scholar 

  112. Tang C, Zhang Z, Lai S, et al. Magnetic proximity effect in graphene/CrBr3 van der Waals heterostructures. Adv Mater, 2020, 32: 1908498

    Article  Google Scholar 

  113. Wu Y, Cui Q, Zhu M, et al. Magnetic exchange field modulation of quantum hall ferromagnetism in 2D van der Waals CrCl3/graphene heterostructures. ACS Appl Mater Interf, 2021, 13: 10656–10663

    Article  Google Scholar 

  114. Zhang J, Zhao B, Zhou T, et al. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys Rev B, 2018, 97: 085401

    Article  Google Scholar 

  115. Farooq M U, Hong J. Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. npj 2D Mater Appl, 2019, 3: 3

    Article  Google Scholar 

  116. Zhang L, Huang X, Dai H, et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der Waals heterostructures. Adv Mater, 2020, 32: 2002032

    Article  Google Scholar 

  117. Tan X, Ding L, Du G F, et al. Spin caloritronics in two-dimensional CrI3/NiCl2 van der Waals heterostructures. Phys Rev B, 2021, 103: 115415

    Article  Google Scholar 

  118. Fu H, Liu C X, Yan B. Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure. Sci Adv, 2020, 6: eaaz0948

    Article  Google Scholar 

  119. Zhu R, Zhang W, Shen W, et al. Exchange bias in van der Waals CrCl3/Fe3GeTe2 heterostructures. Nano Lett, 2020, 20: 5030–5035

    Article  Google Scholar 

  120. Manna P K, Yusuf S M. Two interface effects: exchange bias and magnetic proximity. Phys Rep, 2014, 535: 61–99

    Article  Google Scholar 

  121. Pan L, Huang L, Zhong M, et al. Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X = Br, I) monolayers. Nanoscale, 2018, 10: 22196–22202

    Article  Google Scholar 

  122. Li X, Lu J T, Zhang J, et al. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett, 2019, 19: 5133–5139

    Article  Google Scholar 

  123. Lin Z, Chen X. Ultrathin scattering spin filter and magnetic tunnel junction implemented by ferromagnetic 2D van der Waals material. Adv Electron Mater, 2020, 6: 1900968

    Article  Google Scholar 

  124. Pan L, Wen H, Huang L, et al. Two-dimensional XSe2 (X = Mn, V) based magnetic tunneling junctions with high curie temperature. Chin Phys B, 2019, 28: 107504

    Article  Google Scholar 

  125. Yan Z, Zhang R, Dong X, et al. Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys Chem Chem Phys, 2020, 22: 14773–14780

    Article  Google Scholar 

  126. Lin H, Yan F, Hu C, et al. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl Mater Interf, 2020, 12: 43921–43926

    Article  Google Scholar 

  127. Soriano D, Lado J L. Exchange-bias controlled correlations in magnetically encapsulated twisted van der Waals dichalcogenides. J Phys D-Appl Phys, 2020, 53: 474001

    Article  Google Scholar 

  128. Klein D R, MacNeill D, Lado J L, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360: 1218–1222

    Article  Google Scholar 

  129. Song T, Cai X, Tu M W Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360: 1214–1218

    Article  Google Scholar 

  130. Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 2018, 9: 2516

    Article  Google Scholar 

  131. Song T, Fei Z, Yankowitz M, et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat Mater, 2019, 18: 1298–1302

    Article  Google Scholar 

  132. Chen X R, Chen W, Shao L B, et al. Engineering chiral edge states in two-dimensional topological insulator/ferromagnetic insulator heterostructures. Phys Rev B, 2019, 99: 085417

    Article  Google Scholar 

  133. Heath J J, Costa M, Buongiorno-Nardelli M, et al. Role of quantum confinement and interlayer coupling in CrI3-graphene magnetic tunnel junctions. Phys Rev B, 2020, 101: 195439

    Article  Google Scholar 

  134. Avsar A, Tan J Y, Luo X, et al. van der Waals bonded Co/h-BN contacts to ultrathin black phosphorus devices. Nano Lett, 2017, 17: 5361–5367

    Article  Google Scholar 

  135. Wu Q, Shen L, Bai Z, et al. Efficient spin injection into graphene through a tunnel barrier: overcoming the spin-conductance mismatch. Phys Rev Appl, 2014, 2: 044008

    Article  Google Scholar 

  136. Liang Y, Zhu J, Xiao F, et al. Nanoscale inverters enabled by a facile dry-transfer technique capable of fast prototyping of emerging two-dimensional electronic devices. In: Proceedings of the 5th IEEE Electron Devices Technology and Manufacturing Conference (EDTM), 2021. 1–3

  137. Fei Z, Zhao W, Palomaki T A, et al. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560: 336–339

    Article  Google Scholar 

  138. dos Santos J M B L, Peres N M R, Neto A H C. Graphene bilayer with a twist: electronic structure. Phys Rev Lett, 2007, 99: 256802

    Article  Google Scholar 

  139. Cao Y, Luo J Y, Fatemi V, et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys Rev Lett, 2016, 117: 116804

    Article  Google Scholar 

  140. Kim K, DaSilva A, Huang S, et al. Tunable Moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc Natl Acad Sci USA, 2017, 114: 3364–3369

    Article  Google Scholar 

  141. Yasuda K, Wang X, Watanabe K, et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372: 1458–1462

    Article  Google Scholar 

  142. Liu X, Wang W, Yang F, et al. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Sci China Inf Sci, 2021, 64: 140404

    Article  Google Scholar 

  143. Wu S, Wang X, Jiang W, et al. Interface engineering of ferroelectric-gated MoS2 phototransistor. Sci China Inf Sci, 2021, 64: 140407

    Article  Google Scholar 

  144. Shen P C, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593: 211–217

    Article  Google Scholar 

  145. Dang Z, Wang W, Chen J, et al. Vis-NIR photodetector with microsecond response enabled by 2D bismuth/Si(111) heterojunction. 2D Mater, 2021, 8: 035002

    Article  Google Scholar 

  146. Meng W, Xu F, Yu Z, et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat Nanotechnol, 2021, 16: 1231–1236

    Article  Google Scholar 

  147. Huang M, Li S, Zhang Z, et al. Multifunctional high-performance van der Waals heterostructures. Nat Nanotechnol, 2017, 12: 1148–1154

    Article  Google Scholar 

  148. Xiong X, Kang J, Hu Q, et al. Reconfigurable logic-in-memory and multilingual artificial synapses based on 2D heterostructures. Adv Funct Mater, 2020, 30: 1909645

    Article  Google Scholar 

  149. Shih C C, Huang M H, Wan C K, et al. Tuning interface barrier in 2D BP/ReSe2 heterojunctions in control of optoelectronic performances and energy conversion efficiencies. ACS Photon, 2020, 7: 2886–2895

    Article  Google Scholar 

  150. Li D, Chen M, Sun Z, et al. Two-dimensional non-volatile programmable p-n junctions. Nat Nanotechnol, 2017, 12: 901–906

    Article  Google Scholar 

  151. Mukherjee B, Zulkefli A, Watanabe K, et al. Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene heterostructures. Adv Funct Mater, 2020, 30: 2001688

    Article  Google Scholar 

  152. Mukherjee B, Hayakawa R, Watanabe K, et al. ReS2/h-BN/graphene heterostructure based multifunctional devices: tunneling diodes, FETs, logic gates, and memory. Adv Electron Mater, 2021, 7: 2000925

    Article  Google Scholar 

  153. Wang B, Luo H, Wang X, et al. Bifunctional NbS2-based asymmetric heterostructure for lateral and vertical electronic devices. ACS Nano, 2020, 14: 175–184

    Article  Google Scholar 

  154. Hu R, Wu E, Xie Y, et al. Multifunctional anti-ambipolar p-n junction based on MoTe2/MoS2 heterostructure. Appl Phys Lett, 2019, 115: 073104

    Article  Google Scholar 

  155. Lee J, Duong N T, Bang S, et al. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional devices. Nano Lett, 2020, 20: 2370–2377

    Article  Google Scholar 

  156. Afzal A M, Iqbal M Z, Dastgeer G, et al. Highly sensitive, ultrafast, and broadband photo-detecting field-effect transistor with transition-metal dichalcogenide van der Waals heterostructures of MoTe2 and PdSe2. Adv Sci, 2021, 8: 2003713

    Article  Google Scholar 

  157. Datta K, Shadman A, Rahman E, et al. Trilayer TMDC heterostructures for MOSFETs and nanobiosensors. J Electron Mater, 2017, 46: 1248–1260

    Article  Google Scholar 

  158. Vu Q A, Shin Y S, Kim Y R, et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat Commun, 2016, 7: 12725

    Article  Google Scholar 

  159. Sundararaju U, Haniff M A S M, Ker P J, et al. MoS2/h-BN/graphene heterostructure and plasmonic effect for self-powering photodetector: a review. Materials, 2021, 14: 1672

    Article  Google Scholar 

  160. He J, Fang N, Nakamura K, et al. 2D tunnel field effect transistors (FETs) with a stable charge-transfer-type p+-WSe2 source. Adv Electron Mater, 2018, 4: 1800207

    Article  Google Scholar 

  161. Balaji Y, Smets Q, Śabo Á, et al. MoS2/MoTe2 heterostructure tunnel FETs using gated Schottky contacts. Adv Funct Mater, 2020, 30: 1905970

    Article  Google Scholar 

  162. Fiori G, Betti A, Bruzzone S, et al. Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano, 2012, 6: 2642–2648

    Article  Google Scholar 

  163. Tang H L, Chiu M H, Tseng C C, et al. Multilayer graphene-WSe2 heterostructures for WSe2 transistors. ACS Nano, 2017, 11: 12817–12823

    Article  Google Scholar 

  164. Yang Z, Pan J, Liu Q, et al. Electronic structures and transport properties of a MoS2-NbS2 nanoribbon lateral heterostructure. Phys Chem Chem Phys, 2017, 19: 1303–1310

    Article  Google Scholar 

  165. Liu Q, Ouyang F, Yang Z, et al. Electronic properties and transistors of the NbS2-MoS2-NbS2 NR heterostructure. Nanotechnology, 2017, 28: 075702

    Article  Google Scholar 

  166. Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7: 7931–7936

    Article  Google Scholar 

  167. Shih C J, Wang Q H, Son Y, et al. Tuning on-off current ratio and field-effect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation. ACS Nano, 2014, 8: 5790–5798

    Article  Google Scholar 

  168. Moriya R, Yamaguchi T, Inoue Y, et al. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl Phys Lett, 2014, 105: 083119

    Article  Google Scholar 

  169. Sata Y, Moriya R, Yamaguchi T, et al. Modulation of Schottky barrier height in graphene/MoS2/metal vertical heterostructure with large current ON-OFF ratio. Jpn J Appl Phys, 2015, 54: 04DJ04

    Article  Google Scholar 

  170. Tran M D, Kim H, Kim J S, et al. Two-terminal multibit optical memory via van der Waals heterostructure. Adv Mater, 2019, 31: 1807075

    Article  Google Scholar 

  171. Oliva N, Backman J, Capua L, et al. WSe2/SnSe2 vdW heterojunction tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. npj 2D Mater Appl, 2020, 4: 5

    Article  Google Scholar 

  172. Liu H, Hussain S, Ali A, et al. A vertical WSe2-MoSe2 p-n heterostructure with tunable gate rectification. RSC Adv, 2018, 8: 25514–25518

    Article  Google Scholar 

  173. Yi J, Sun X, Zhu C, et al. Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv Mater, 2021, 33: 2101036

    Article  Google Scholar 

  174. Wang F, Yin L, Wang Z, et al. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for highperformance electronic and optoelectronic devices. Appl Phys Lett, 2016, 109: 193111

    Article  Google Scholar 

  175. Yang Z, Kim C, Lee K Y, et al. A Fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2-metal junction. Adv Mater, 2019, 31: 1808231

    Article  Google Scholar 

  176. Lee J, Parrish K N, Chowdhury S F, et al. State-of-the-art graphene transistors on hexagonal boron nitride, high-k, and polymeric films for GHz flexible analog nanoelectronics. In: Proceedings of International Electron Devices Meeting, 2012

  177. Lee J, Tao L, Parrish K N, et al. Multi-finger flexible graphene field effect transistors with high bendability. Appl Phys Lett, 2012, 101: 252109

    Article  Google Scholar 

  178. Yao H, Wu E, Liu J. Frequency doubler based on a single MoTe2/MoS2 anti-ambipolar heterostructure. Appl Phys Lett, 2020, 117: 123103

    Article  Google Scholar 

  179. Yuan L, Chung T F, Kuc A, et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci Adv, 2018, 4: e1700324

    Article  Google Scholar 

  180. Liu Y, Liu C, Wang X, et al. Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2. Sci Rep, 2018, 8: 12840

    Article  Google Scholar 

  181. Chen Y, Wang Y, Wang Z, et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat Electron, 2021, 4: 357–363

    Article  Google Scholar 

  182. Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett, 2016, 16: 2254–2259

    Article  Google Scholar 

  183. Wu W, Zhang Q, Zhou X, et al. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 2018, 51: 45–53

    Article  Google Scholar 

  184. Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340: 1311–1314

    Article  Google Scholar 

  185. Hu S, Xu J, Zhao Q, et al. Gate-switchable photovoltaic effect in BP/MoTe2 van der Waals heterojunctions for self-driven logic optoelectronics. Adv Opt Mater, 2021, 9: 2001802

    Article  Google Scholar 

  186. Yu W J, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013, 8: 952–958

    Article  Google Scholar 

  187. Furchi M M, Pospischil A, Libisch F, et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett, 2014, 14: 4785–4791

    Article  Google Scholar 

  188. Murthy A A, Stanev T K, Cain J D, et al. Intrinsic transport in 2D heterostructures mediated through h-BN tunneling contacts. Nano Lett, 2018, 18: 2990–2998

    Article  Google Scholar 

  189. Zhou Y, Xu W, Sheng Y, et al. Symmetry-controlled reversible photovoltaic current flow in ultrathin all 2D vertically stacked graphene/MoS2/WS2/graphene devices. ACS Appl Mater Interf, 2019, 11: 2234–2242

    Article  Google Scholar 

  190. Hou L, Zhang Q, Tweedie M, et al. Photocurrent direction control and increased photovoltaic effects in all-2D ultrathin vertical heterostructures using asymmetric h-BN tunneling barriers. ACS Appl Mater Interf, 2019, 11: 40274–40282

    Article  Google Scholar 

  191. Furchi M M, Höller F, Dobusch L, et al. Device physics of van der Waals heterojunction solar cells. npj 2D Mater Appl, 2018, 2: 3

    Article  Google Scholar 

  192. Linghu J, Yang T, Luo Y, et al. High-throughput computational screening of vertical 2D van der Waals heterostructures for high-efficiency excitonic solar cells. ACS Appl Mater Interf, 2018, 10: 32142–32150

    Article  Google Scholar 

  193. Kar M, Sarkar R, Pal S, et al. Tunable electronic structure of two-dimensional MoX2 (X = S, Se)/SnS2 van der Waals heterostructures. J Phys Chem C, 2020, 124: 21357–21365

    Article  Google Scholar 

  194. Rahman M S, Anower M S, Abdulrazak L F. Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor. Photon Nanostruct Fund Appl, 2019, 35: 100711

    Article  Google Scholar 

  195. Wu L, Guo J, Wang Q, et al. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors Actuat B-Chem, 2017, 249: 542–548

    Article  Google Scholar 

  196. Zheng G, Zou X, Chen Y, et al. Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications. Opt Mater, 2017, 66: 171–178

    Article  Google Scholar 

  197. Rahman M M, Rana M M, Rahman M S, et al. Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt Mater, 2020, 107: 110123

    Article  Google Scholar 

  198. Loan P T K, Zhang W, Lin C T, et al. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Adv Mater, 2014, 26: 4838–4844

    Article  Google Scholar 

  199. Li N, Tang T, Li J, et al. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. J Magn Magn Mater, 2019, 484: 445–450

    Article  Google Scholar 

  200. Li F, Wang S, Yin H, et al. Photoelectrochemical biosensor for DNA formylation detection in genomic DNA of maize seedlings based on black TiO2-enhanced photoactivity of MoS2/WS2 heterojunction. ACS Sens, 2020, 5: 1092–1101

    Article  Google Scholar 

  201. Choi C, Choi M K, Liu S, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun, 2017, 8: 1664

    Article  Google Scholar 

  202. Ghobadi N, Pourfath M. Vertical tunneling graphene heterostructure-based transistor for pressure sensing. IEEE Electron Device Lett, 2015, 36: 280–282

    Article  Google Scholar 

  203. Chhetry A, Sharma S, Barman S C, et al. Black phosphorus@laser-engraved graphene heterostructure-based temperaturestrain hybridized sensor for electronic-skin applications. Adv Funct Mater, 2021, 31: 2007661

    Article  Google Scholar 

  204. Phan D T, Park I, Park A R, et al. Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability. Sci Rep, 2017, 7: 10561

    Article  Google Scholar 

  205. Cho B, Yoon J, Lim S K, et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interf, 2015, 7: 16775–16780

    Article  Google Scholar 

  206. Tabata H, Sato Y, Oi K, et al. Bias- and gate-tunable gas sensor response originating from modulation in the Schottky barrier height of a graphene/MoS2 van der Waals heterojunction. ACS Appl Mater Interf, 2018, 10: 38387–38393

    Article  Google Scholar 

  207. Hong H S, Phuong N H, Huong N T, et al. Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl Surface Sci, 2019, 492: 449–454

    Article  Google Scholar 

  208. Pham T, Ramnani P, Villarreal C C, et al. MoS2-graphene heterostructures as efficient organic compounds sensing 2D materials. Carbon, 2019, 142: 504–512

    Article  Google Scholar 

  209. Ikram M, Liu L, Liu Y, et al. Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J Mater Chem A, 2019, 7: 14602–14612

    Article  Google Scholar 

  210. Kim Y, Lee S, Song J G, et al. 2D Transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor. Adv Funct Mater, 2020, 30: 2003360

    Article  Google Scholar 

  211. Liu C, Yan X, Song X, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 2018, 13: 404–410

    Article  Google Scholar 

  212. Li D, Wang X, Zhang Q, et al. Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv Funct Mater, 2015, 25: 7360–7365

    Article  Google Scholar 

  213. Liu C, Zou X, Wu M C, et al. Polarization-resolved broadband MoS2/black phosphorus/MoS2 optoelectronic memory with ultralong retention time and ultrahigh switching ratio. Adv Funct Mater, 2021, 31: 2100781

    Article  Google Scholar 

  214. Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano, 2013, 7: 3246–3252

    Article  Google Scholar 

  215. Liu L, Liu C, Jiang L, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat Nanotechnol, 2021, 16: 874–881

    Article  Google Scholar 

  216. Ye F, Lee J, Feng P X L. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators. Nanoscale, 2017, 9: 18208–18215

    Article  Google Scholar 

  217. Kumar R, Session D W, Tsuchikawa R, et al. Circular electromechanical resonators based on hexagonal-boron nitridegraphene heterostructures. Appl Phys Lett, 2020, 117: 183103

    Article  Google Scholar 

  218. Kim S P, Yu J, van der Zande A M. Nano-electromechanical drumhead resonators from two-dimensional material bimorphs. Nano Lett, 2018, 18: 6686–6695

    Article  Google Scholar 

  219. Ye F, Islam A, Zhang T, et al. Ultrawide frequency tuning of atomic layer van der Waals heterostructure electromechanical resonators. Nano Lett, 2021, 21: 5508–5515

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62150052, U21A20-459, 62004026) and Sichuan Science and Technology Program (Grant Nos. 2021YJ0517, 2021JDTD0028). We thank Dr. Ming HUANG for helpful discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zenghui Wang, Shenghai Pei or Juan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xu, B., Pei, S. et al. Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications. Sci. China Inf. Sci. 65, 211401 (2022). https://doi.org/10.1007/s11432-021-3432-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3432-6

Keywords

Navigation