Skip to main content
Log in

Microwave photonics

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

This article has been updated

Abstract

Microwave photonics, an interdisciplinary field that combines microwave engineering and photonic technology for the generation, transmission, processing, and control of microwave signals, to take advantage of the broad bandwidth, high frequency, and low loss offered by modern photonics, has been intensively researched for the last few decades, and numerous solutions have been proposed and demonstrated. In this article, an overview about microwave photonics is provided which covers the basic concepts of microwave photonics, photonic-assisted microwave signal generation, photonic-assisted microwave signal processing, and true time delay beamforming. The implementation of microwave photonic systems based on photonic integrated circuits is also reviewed, including the design, fabrication, and material platforms, application-specific photonic integrated circuits for microwave photonics, and programmable integrated microwave photonics. The challenges and future applications of microwave photonics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 14 September 2022

    There are text modification in the body of the article.

References

  1. Yao J. Microwave photonics. J Lightw Technol, 2009, 27: 314–335

    Article  Google Scholar 

  2. Capmany J, Novak D. Microwave photonics combines two worlds. Nat Photon, 2007, 1: 319–330

    Article  Google Scholar 

  3. Seeds A J, Williams K J. Microwave photonics. J Lightwave Technol, 2006, 24: 4628–4641

    Article  Google Scholar 

  4. Berceli T, Herczfeld P R. Microwave photonics—a historical perspective. IEEE Trans Microwave Theor Techn, 2010, 58: 2992–3000

    Article  Google Scholar 

  5. Cox III C H. Analog Photonic Links: Theory and Practice. Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  6. Chang W S C. RF Photonic Technology in Optical Fiber Links. Cambridge: Cambridge University Press, 2007

    Google Scholar 

  7. Iezekiel S. Microwave Photonics. Hoboken: John Wiley & Sons, 2009

    Book  Google Scholar 

  8. Vilcot A, Cabon B, Chazelas J. Microwave-Photonics: From Components to Applications and Systems. Berlin: Springer, 2003

    Book  Google Scholar 

  9. Rumerhald C, Algani C, Billabert A L. Microwaves Photonic Links: Components and Circuits. Hoboken: John Wiley & Sons, 2013

    Google Scholar 

  10. Cox C H, Ackerman E I, Betts G E, et al. Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans Microwave Theor Techn, 2006, 54: 906–920

    Article  Google Scholar 

  11. Roussell H V, Regan M D, Prince J L, et al. Gain, noise figure and bandwidth-limited dynamic range of a low-biased external modulation link. In: Proceedings of Interntional Topical Meeting on Microwave Photonics, Victoria, 2007. 84–87

  12. Gasulla I, Capmany J. Analytical model and figures of merit for filtered microwave photonic links. Opt Express, 2011, 19: 19758–19774

    Article  Google Scholar 

  13. Goldberg L, Taylor H F, Weller J F, et al. Microwave signal generation with injection-locked laser diodes. Electron Lett, 1983, 19: 491–493

    Article  Google Scholar 

  14. Goldberg L, Yurek A, Taylor H F, et al. 35 GHz microwave signal generation with injection locked laser diode. Electron Lett, 1985, 21: 714–715

    Article  Google Scholar 

  15. Bouyer P, Gustavson T L, Haritos K G, et al. Microwave signal generation with optical injection locking. Opt Lett, 1996, 21: 1502–1504

    Article  Google Scholar 

  16. Cui W, Shao T, Yao J. Wavelength reuse in a UWB Over WDM-PON based on injection locking of a Fabry-Perot laser diode and polarization multiplexing. J Lightwave Technol, 2014, 32: 220–227

    Article  Google Scholar 

  17. Pan S, Tang Z, Zhu D, et al. Injection-locked fiber laser for tunable millimeter-wave generation. Opt Lett, 2011, 36: 4722–4724

    Article  Google Scholar 

  18. Pan S, Yao J. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection. Opt Lett, 2010, 35: 1911–1913

    Article  Google Scholar 

  19. Harrison J, Mooradian A. Linewidth and offset frequency locking of external cavity GaAlAs lasers. IEEE J Quantum Electron, 1989, 25: 1252–1255

    Article  Google Scholar 

  20. Ramos R T, Seeds A J. Fast heterodyne optical phase-lock loop using double quantum well laser diodes. Electron Lett, 1992, 28: 82–83

    Article  Google Scholar 

  21. Gliese U, Nielsen T N, Bruun M, et al. A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers. IEEE Photon Technol Lett, 1992, 4: 936–938

    Article  Google Scholar 

  22. Bordonalli A C, Walton C, Seeds A J. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop. J Lightwave Technol, 1999, 17: 328–342

    Article  Google Scholar 

  23. Fan F Z, Dagenais M. Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop. IEEE Trans Microwave Theor Techn, 1997, 45: 1296–1300

    Article  Google Scholar 

  24. Rideout H R, Seregelyi J S, Paquet S, et al. Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module. IEEE Photon Technol Lett, 2006, 18: 2344–2346

    Article  Google Scholar 

  25. Rideout H R, Seregelyi J S, Yao J. A true time delay beamforming system incorporating a wavelength tunable optical phase-lock loop. J Lightwave Technol, 2007, 25: 1761–1770

    Article  Google Scholar 

  26. Balakier K, Ponnampalam L, Fice M J, et al. Integrated semiconductor laser optical phase lock loops. IEEE J Sel Top Quantum Electron, 2018, 24: 1500112

    Article  Google Scholar 

  27. Balakier K, Shams H, Fice M J, et al. Optical phase lock loop as high-quality tuneable filter for optical frequency comb line selection. J Lightwave Technol, 2018, 36: 4646–4654

    Article  Google Scholar 

  28. O’Reilly J J, Lane P M, Heidemann R, et al. Optical generation of very narrow linewidth millimetre wave signals. Electron Lett, 1992, 28: 2309–2311

    Article  Google Scholar 

  29. O’Reilly J J, Lane P M. Remote delivery of video services using mm-waves and optics. J Lightwave Technol, 1994, 12: 369–375

    Article  Google Scholar 

  30. O’Reilly J J, Lane P M. Fibre-supported optical generation and delivery of 60 GHz signals. Electron Lett, 1994, 30: 1329–1330

    Article  Google Scholar 

  31. Qi G H, Yao J P, Seregelyi J, et al. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Trans Microwave Theor Techn, 2005, 53: 3090–3097

    Article  Google Scholar 

  32. Qi G H, Yao J P, Seregelyi J, et al. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator. J Lightwave Technol, 2005, 23: 2687–2695

    Article  Google Scholar 

  33. Qasymeh M, Li W, Yao J. Frequency-tunable microwave generation based on time-delayed optical combs. IEEE Trans Microwave Theor Techn, 2011, 59: 2987–2993

    Article  Google Scholar 

  34. Li W, Yao J. Investigation of photonically assisted microwave frequency multiplication based on external modulation. IEEE Trans Microwave Theor Techn, 2010, 58: 3259–3268

    Article  Google Scholar 

  35. Pan S L, Yao J P. Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter. IEEE Trans Microwave Theor Techn, 2010, 58: 1967–1975

    Article  Google Scholar 

  36. Liu W L, Wang M G, Yao J P. Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator. J Lightwave Technol, 2013, 31: 1636–1644

    Article  Google Scholar 

  37. Qi G, Yao J, Seregelyi J, et al. Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques. J Lightwave Technol, 2006, 24: 4861–4875

    Article  Google Scholar 

  38. Robins W P. Phase Noise in Signal Sources: Theory and Applications. London: The Institution of Engineering and Technology, 1984. 77

    Book  Google Scholar 

  39. Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division. Nat Photon, 2011, 5: 425–429

    Article  Google Scholar 

  40. Yao X S, Maleki L. Optoelectronic microwave oscillator. J Opt Soc Am B, 1996, 13: 1725–1735

    Article  Google Scholar 

  41. Yao X S, Maleki L. Optoelectronic oscillator for photonic systems. IEEE J Quantum Electron, 1996, 32: 1141–1149

    Article  Google Scholar 

  42. Yao X S, Maleki L. Multiloop optoelectronic oscillator. IEEE J Quantum Electron, 2000, 36: 79–84

    Article  Google Scholar 

  43. Ozdur I, Mandridis D, Hoghooghi N, et al. Low noise optically tunable optoelectronic oscillator with Fabry-Perot etalon. J Lightw Technol, 2010, 28: 3100–3106

    Google Scholar 

  44. Pan S, Yao J. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection. Opt Lett, 2010, 35: 1911–1913

    Article  Google Scholar 

  45. Li W, Yao J. An optically tunable optoelectronic oscillator. J Lightwave Technol, 2010, 28: 2640–2645

    Article  Google Scholar 

  46. Li W, Yao J. A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans Microwave Theor Techn, 2012, 60: 1735–1742

    Article  Google Scholar 

  47. Maleki L. The optoelectronic oscillator. Nature Photon, 2011, 5: 728–730

    Article  Google Scholar 

  48. Zhang J, Yao J. Parity-time-symmetric optoelectronic oscillator. Sci Adv, 2018, 4: eaar6782

    Article  Google Scholar 

  49. Liu Y, Hao T, Li W, et al. Observation of parity-time symmetry in microwave photonics. Light Sci Appl, 2018, 7: 38

    Article  Google Scholar 

  50. Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys Rev Lett, 1998, 80: 5243–5246

    Article  MathSciNet  Google Scholar 

  51. Bender C M. Making sense of non-Hermitian Hamiltonians. Rep Prog Phys, 2007, 70: 947–1018

    Article  MathSciNet  Google Scholar 

  52. Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry. Nat Photon, 2017, 11: 752–762

    Article  Google Scholar 

  53. El-Ganainy R, Makris K G, Khajavikhan M, et al. Non-Hermitian physics and PT symmetry. Nat Phys, 2018, 14: 11–19

    Article  Google Scholar 

  54. Qi B, Chen H Z, Ge L, et al. Parity-time symmetry synthetic lasers: physics and devices. Adv Opt Mater, 2019, 7: 1900694

    Article  Google Scholar 

  55. Hodaei H, Miri M A, Heinrich M, et al. Parity-time-symmetric microring lasers. Science, 2014, 346: 975–978

    Article  Google Scholar 

  56. Feng L, Wong Z J, Ma R M, et al. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346: 972–975

    Article  Google Scholar 

  57. Hodaei H, Miri M A, Hassan A U, et al. Parity-time-symmetric coupled microring lasers operating around an exceptional point. Opt Lett, 2015, 40: 4955–4958

    Article  Google Scholar 

  58. Hodaei H, Miri M A, Hassan A U, et al. Single mode lasing in transversely multi-moded PT-symmetric microring resonators. Laser Photon Rev, 2016, 10: 494–499

    Article  Google Scholar 

  59. Liu W, Li M, Guzzon R S, et al. A photonic integrated parity-time symmetry wavelength-tunable single-mode microring laser. Nature Commun, 2017, 10: 190–196

    Google Scholar 

  60. Fan Z, Zhang W, Qiu Q, et al. Hybrid frequency-tunable parity-time symmetric optoelectronic oscillator. J Lightwave Technol, 2020, 38: 2127–2133

    Article  Google Scholar 

  61. Li P, Dai Z, Fan Z, et al. Parity-time-symmetric frequency-tunable optoelectronic oscillator with a single dual-polarization optical loop. Opt Lett, 2020, 45: 3139

    Article  Google Scholar 

  62. Dai Z, Fan Z Q, Li P, et al. Frequency-tunable parity-time-symmetric optoelectronic oscillator using a polarization-dependent Sagnac loop. J Lightw Technol, 2020, 38: 5327–5332

    Article  Google Scholar 

  63. Fan Z Q, Dai Z, Qiu Q, et al. Parity-time symmetry in a single-loop photonic system. J Lightwave Technol, 2020, 38: 3866–3873

    Google Scholar 

  64. Chi H, Wang C, Yao J. Photonic generation of wideband chirped microwave waveforms. IEEE J Microw, 2021, 1: 787–803

    Article  Google Scholar 

  65. Hao T, Cen Q, Dai Y, et al. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat Commun, 2018, 9: 1839

    Article  Google Scholar 

  66. Tang J, Zhu B, Zhang W, et al. Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Nat Commun, 2020, 11: 3814

    Article  Google Scholar 

  67. Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. J Lightwave Technol, 2006, 24: 201–229

    Article  Google Scholar 

  68. Minasian R A. Photonic signal processing of microwave signals. IEEE Trans Microwave Theor Techn, 2006, 54: 832–846

    Article  Google Scholar 

  69. Yao J. Photonics to the rescue: a fresh look at microwave photonic filters. IEEE Microwave, 2015, 16: 46–60

    Article  Google Scholar 

  70. Capmany J, Pastor D, Martinez A, et al. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Opt Lett, 2003, 28: 1415–1417

    Article  Google Scholar 

  71. Wang Q, Yao J. Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer. IEEE Photon Technol Lett, 2008, 20: 78–80

    Article  Google Scholar 

  72. Yan Y, Blais S R, Yao J P. Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings. J Lightwave Technol, 2007, 25: 3283–3288

    Article  Google Scholar 

  73. Yan Y, Yao J. A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter. IEEE Photon Technol Lett, 2007, 19: 1472–1474

    Article  Google Scholar 

  74. Shahoei H, Yao J. A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating. Opt Express, 2013, 21: 7521

    Article  Google Scholar 

  75. Dai Y, Yao J. Nonuniformly spaced photonic microwave delay-line filters and applications. IEEE Trans Microwave Theor Techn, 2010, 58: 3279–3289

    Article  Google Scholar 

  76. Yi X, Minasian R A. Microwave photonic filter with single bandpass response. Electron Lett, 2009, 45: 362–363

    Article  Google Scholar 

  77. Palaci J, Villanueva G E, Galan J V, et al. Single bandpass photonic microwave filter based on a notch ring resonator. IEEE Photon Technol Lett, 2010, 22: 1276–1278

    Article  Google Scholar 

  78. Marpaung D, Morrison B, Pant R, et al. Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt Lett, 2013, 38: 4300–4303

    Article  Google Scholar 

  79. Li W, Li M, Yao J. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans Microwave Theor Techn, 2012, 60: 1287–1296

    Article  Google Scholar 

  80. Erdogan T. Fiber grating spectra. J Lightwave Technol, 1997, 15: 1277–1294

    Article  Google Scholar 

  81. Gao L, Chen X, Yao J. Tunable microwave photonic filter with a narrow and flat-top passband. IEEE Microw Wireless Compon Lett, 2013, 23: 362–364

    Article  Google Scholar 

  82. Dai Y, Chen X, Jiang D, et al. Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period. IEEE Photon Technol Lett, 2004, 16: 2284–2286

    Article  Google Scholar 

  83. Gao L, Zhang J, Chen X, et al. Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber Bragg grating. IEEE Trans Microwave Theor Techn, 2014, 62: 380–387

    Article  Google Scholar 

  84. Yan Y, Yao J. Photonic microwave bandpass filter with improved dynamic range. Opt Lett, 2008, 33: 1756–1758

    Article  Google Scholar 

  85. Li W, Yao J. A narrow-passband frequency-tunable microwave photonic filter with an improved dynamic range. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, 2013. 1–3

  86. Chen X, Li W, Yao J. Microwave photonic link with improved dynamic range using a polarization modulator. IEEE Photon Technol Lett, 2013, 25: 1373–1376

    Article  Google Scholar 

  87. Han X, Xu E, Yao J. Tunable single bandpass microwave photonic filter with an improved dynamic range. IEEE Photon Technol Lett, 2016, 28: 11–14

    Article  Google Scholar 

  88. Yao J. Photonic generation of microwave arbitrary waveforms. Optics Commun, 2011, 284: 3723–3736

    Article  Google Scholar 

  89. Leaird D E, Weiner A M. Femtosecond opticalpacket generation by a direct space-to-time pulse shaper. Opt Lett, 1999, 24: 853–855

    Article  Google Scholar 

  90. Leaird D E, Weiner A M. Femtosecond direct space-to-time pulse shaping. IEEE J Quantum Electron, 2001, 37: 494–504

    Article  Google Scholar 

  91. Leaird D E, Weiner A M. Chirp control in the direct space-to-time pulse shaper. Opt Lett, 2000, 25: 850–852

    Article  Google Scholar 

  92. McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt Lett, 2002, 27: 1345–1347

    Article  Google Scholar 

  93. McKinney J D, Seo D S, Weiner A M. Photonically assisted generation of continuous arbitrary millimetre electromagnetic waveforms. Electron Lett, 2003, 39: 309–310

    Article  Google Scholar 

  94. McKinney J D, Seo J D, Leaird D E, et al. Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping. J Lightwave Technol, 2003, 21: 3020–3028

    Article  Google Scholar 

  95. Xiao S, McKinney J D, Weiner A M. Photonic microwave arbitrary waveform generation using a virtually imaged phasedarray (VIPA) direct space-to-time pulse shaper. IEEE Photon Technol Lett, 2004, 16: 1936–1938

    Article  Google Scholar 

  96. Leaird D E, Weiner A M. Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration. Opt Lett, 2004, 29: 1551–1553

    Article  Google Scholar 

  97. Wang C, Yao J P. Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber Bragg grating. J Lightwave Technol, 2009, 27: 3336–3341

    Article  Google Scholar 

  98. Wang C, Yao J P. Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation. IEEE Photon Technol Lett, 2009, 21: 793–795

    Article  Google Scholar 

  99. Yao J. Microwave photonics: arbitrary waveform generation. Nat Photon, 2010, 4: 79–80

    Article  Google Scholar 

  100. Wang C, Yao J P. Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating. J Lightwave Technol, 2010, 28: 1652–1660

    Article  Google Scholar 

  101. Chi H, Yao J P. Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating. J Lightwave Technol, 2008, 26: 1282–1287

    Article  Google Scholar 

  102. Wang C, Yao J. Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating. IEEE Trans Microwave Theor Techn, 2008, 56: 542–553

    Article  Google Scholar 

  103. Azaña J, Berger N K, Levit B, et al. Reconfigurable generation of high-repetition-rate optical pulse sequences based on time-domain phase-only filtering. Opt Lett, 2005, 30: 3228–3230

    Article  Google Scholar 

  104. Chi H, Yao J. Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator. Electron Lett, 2007, 43: 415–417

    Article  Google Scholar 

  105. Wang C, Li M, Yao J. Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system. IEEE Photon Technol Lett, 2010, 22: 1285–1287

    Article  Google Scholar 

  106. Li M, Wang C, Li W, et al. An unbalanced temporal pulse-shaping system for chirped microwave waveform generation. IEEE Trans Microwave Theor Techn, 2010, 58: 2968–2975

    Article  Google Scholar 

  107. Dolfi D, Michel-Gabriel F, Bann S, et al. Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna. Opt Lett, 1991, 16: 255–257

    Article  Google Scholar 

  108. Dolfi D, Joffre P, Antoine J, et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays. Appl Opt, 1996, 35: 5293–5300

    Article  Google Scholar 

  109. Ng W, Walston A A, Tangonan G L, et al. The first demonstration of an optically steered microwave phased array antenna using true-time-delay. J Lightwave Technol, 1991, 9: 1124–1131

    Article  Google Scholar 

  110. Esman R D, Monsma M J, Dexter J L, et al. Microwave true time-delay modulator using fibre-optic dispersion. Electron Lett, 1992, 28: 1905

    Article  Google Scholar 

  111. Esman R D, Frankel M Y, Dexter J L, et al. Fiber-optic prism true time-delay antenna feed. IEEE Photon Technol Lett, 1993, 5: 1347–1349

    Article  Google Scholar 

  112. Molony A, Lin Z, Williams J A R, et al. Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines. IEEE Trans Microwave Theor Techn, 1997, 45: 1527–1530

    Article  Google Scholar 

  113. Corral J L, Marti J, Fuster J M, et al. True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings. IEEE Photon Technol Lett, 1997, 9: 1529–1531

    Article  Google Scholar 

  114. Zmuda H, Soref R A, Payson P, et al. Photonic beamformer for phased array antennas using a fiber grating prism. IEEE Photon Technol Lett, 1997, 9: 241–243

    Article  Google Scholar 

  115. Minasian R A, Alameh K E. Optical-fiber grating-based beamforming network for microwave phased arrays. IEEE Trans Microwave Theor Techn, 1997, 45: 1513–1518

    Article  Google Scholar 

  116. Matthews P J, Frankel M Y, Esman R D. A wide-band fiber-optic true-time-steered array receiver capable of multiple independent simultaneous beams. IEEE Photon Technol Lett, 1998, 10: 722–724

    Article  Google Scholar 

  117. Tong D T K, Wu M C. Multiwavelength optically controlled phased-array antennas. IEEE Trans Microwave Theor Techn, 1998, 46: 108–115

    Article  Google Scholar 

  118. Tong D T K, Wu M C. Common transmit/receive module for multiwavelength optically controlled phased array antennas. In: Proceedings of Optical Fiber Communication Conference and Exhibit, 1998. 354–355

  119. Yao J P, Yang J L, Liu Y Q. Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source. IEEE Photon Technol Lett, 2002, 14: 687–689

    Article  Google Scholar 

  120. Liu Y, Yao J, Yang J. Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism. Optics Commun, 2002, 207: 177–187

    Article  Google Scholar 

  121. Vidal B, Madrid D, Corral J L, et al. Photonic true-time delay beamformer for broadband wireless access network at 40 GHz band. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest, 2002. 3: 1949–1952

    Google Scholar 

  122. Liu Y Q, Yang J L, Yao J P. Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photon Technol Lett, 2002, 14: 1172–1174

    Article  Google Scholar 

  123. Chen Y H, Chen R T. A fully packaged true time delay module for a K-band phased array antenna system demonstration. IEEE Photon Technol Lett, 2002, 14: 1175–1177

    Article  Google Scholar 

  124. Liu Y, Yao J, Yang J. Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism. Appl Opt, 2003, 42: 2273–2277

    Article  Google Scholar 

  125. Jung B M, Shin J D, Kim B G. Optical true time-delay for two-dimensional X-band phased array antennas. IEEE Photon Technol Lett, 2007, 19: 877–879

    Article  Google Scholar 

  126. Blumenthal D J, Barton J, Beheshti N, et al. Integrated photonics for low-power packet networking. IEEE J Sel Top Quantum Electron, 2011, 17: 458–471

    Article  Google Scholar 

  127. Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photon Rev, 2013, 7: 506–538

    Article  Google Scholar 

  128. Iezekiel S, Burla M, Klamkin J, et al. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microwave, 2015, 16: 28–45

    Article  Google Scholar 

  129. Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nat Photon, 2019, 13: 80–90

    Article  Google Scholar 

  130. Smit M, Leijtens X, Ambrosius H, et al. An introduction to InP-based generic integration technology. Semicond Sci Technol, 2014, 29: 083001

    Article  Google Scholar 

  131. Coldren L A, Nicholes S C, Johansson L, et al. High performance InP-based photonic ICs—a tutorial. J Lightwave Technol, 2011, 29: 554–570

    Article  Google Scholar 

  132. Kish F, Nagarajan R, Welch D, et al. From visible light-emitting diodes to large-scale III-V photonic integrated circuits. Proc IEEE, 2013, 101: 2255–2270

    Article  Google Scholar 

  133. Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nat Photon, 2010, 4: 492–494

    Article  Google Scholar 

  134. Bogaerts W, Fiers M, Dumon P. Design challenges in silicon photonics. IEEE J Sel Top Quantum Electron, 2014, 20: 1–8

    Article  Google Scholar 

  135. Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12: 1678–1687

    Article  Google Scholar 

  136. Chrostowski L, Hochberg M. Silicon Photonics Design: From Devices to Systems. Cambridge: Cambridge University Press, 2015

    Book  Google Scholar 

  137. Heck M J R, Bauters J F, Davenport M L, et al. Hybrid silicon photonic integrated circuit technology. IEEE J Sel Top Quantum Electron, 2013, 19: 6100117

    Article  Google Scholar 

  138. Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3: 35–46

    Article  Google Scholar 

  139. Haq B, Kumari S, van Gasse K, et al. Micro-transfer-printed III-V-on-silicon C-band semiconductor optical amplifiers. Laser Photon Rev, 2020, 14: 1900364

    Article  Google Scholar 

  140. Heideman R G, Hoekman M, Schreuder E. TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection. IEEE J Sel Top Quantum Electron, 2012, 18: 1583–1596

    Article  Google Scholar 

  141. Roeloffzen C G H, Zhuang L, Taddei C, et al. Silicon nitride microwave photonic circuits. Opt Express, 2013, 21: 22937–22961

    Article  Google Scholar 

  142. Corbett B, Loi R, Zhou W, et al. Transfer print techniques for heterogeneous integration of photonic components. Prog Quantum Electron, 2017, 52: 1–17

    Article  Google Scholar 

  143. van der Tol J J G M, Jiao Y, Shen L, et al. Indium phosphide integrated photonics in membranes. IEEE J Sel Top Quantum Electron, 2018, 24: 1–9

    Article  Google Scholar 

  144. Qi Y, Li Y. Integrated lithium niobate photonics. Nanophotonics, 2020, 9: 1287–1320

    Article  Google Scholar 

  145. Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey. 1st ed. New York: Springer, 2005

    Google Scholar 

  146. Poberaj G, Koechlin M, Sulser F, et al. Ion-sliced lithium niobate thin films for active photonic devices. Optical Mater, 2009, 31: 1054–1058

    Article  Google Scholar 

  147. Rabiei P, Gunter P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl Phys Lett, 2004, 85: 4603–4605

    Article  Google Scholar 

  148. Wu R, Wang M, Xu J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 2018, 8: 910

    Article  Google Scholar 

  149. Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4: 1536–1537

    Article  Google Scholar 

  150. Muñoz P, Capmany J, Pérez D, et al. Integrated microwave photonics: state of the art and future trends. In: Proceedings of International Conference on Transparent Optical Networks (ICTON), Graz, 2014

  151. Guzzon R S, Norberg E J, Parker J S, et al. Monolithically integrated programmable photonic microwave filter with tunable inter-ring coupling. In: Proceedings of IEEE International Topical Meeting on Microwave Photonics, Montreal, 2010. 23–26

  152. Norberg E J, Guzzon R S, Parker J S, et al. A monolithic programmable optical filter for RF-signal processing. In: Proceedings of IEEE International Topical Meeting on Microwave Photonics, Montreal, 2010. 365–368

  153. Norberg E J, Guzzon R S, Parker J S, et al. Programmable photonic filters from monolithically cascaded filter stages. In: Proceedings of Integrated Photonics Research, Silicon and Nanophotonics, Monterey, 2010

  154. Norberg E J, Guzzon R S, Parker J S, et al. Programmable photonic microwave filters monolithically integrated in InPInGaAsP. J Lightwave Technol, 2011, 29: 1611–1619

    Article  Google Scholar 

  155. Guzzon R S, Norberg E J, Parker J S, et al. Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss. Opt Express, 2011, 19: 7816–7826

    Article  Google Scholar 

  156. Chen H-W, Fang A W, Bovington J, et al. Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonator. In: Proceedings of IEEE International Topical Meeting on Microwave Photonics, Valencia, 2009. 1–4

  157. Chen H W, Fang A W, Peters J D, et al. Integrated microwave photonic filter on a hybrid silicon platform. IEEE Trans Microwave Theor Techn, 2010, 58: 3213–3219

    Article  Google Scholar 

  158. Madsen C K, Zhao J H. Optical Filter Design and Analysis: A Signal Processing Approach. Hoboken: John Wiley & Sons, Inc. 1999

    Book  Google Scholar 

  159. Dong P, Feng N N, Feng D, et al. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt Express, 2010, 18: 23784–23789

    Article  Google Scholar 

  160. Feng N N, Dong P, Feng D, et al. Thermally-efficient reconfigurable narrowband RF-photonic filter. Opt Express, 2010, 18: 24648–24653

    Article  Google Scholar 

  161. Romero-García S, Moscoso-Mártir A, Müller J, et al. Wideband multi-stage CROW filters with relaxed fabrication tolerances. Opt Express, 2018, 26: 4723–4737

    Article  Google Scholar 

  162. Rasras M S, Tu K, Gill D M, et al. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators. J Lightwave Technol, 2009, 27: 2105–2110

    Article  Google Scholar 

  163. Rasras M S, Gill D M, Patel S S, et al. Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes. J Lightwave Technol, 2007, 25: 87–92

    Article  Google Scholar 

  164. Zhuang L. Flexible RF filter using a nonuniform SCISSOR. Opt Lett, 2016, 41: 1118

    Article  Google Scholar 

  165. Zhuang L, Taddei C, Hoekman M, et al. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links. Opt Express, 2013, 21: 25999–26013

    Article  Google Scholar 

  166. Zhuang L, Khan M R, Beeker W, et al. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Opt Express, 2012, 20: 26499–26510

    Article  Google Scholar 

  167. Taddei C, Yen N T H, Zhuang L M, et al. Waveguide filter-based on-chip differentiator for microwave photonic signal processing. In: Proceedings of IEEE International Topical Meeting on Microwave Photonics (MWP), Alexandria, 2013. 28–31

  168. Zhuang L M, Hoekman M, Oldenbeuving R M, et al. CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors. IEEE Photon Technol Lett, 2014, 26: 1034–1037

    Article  Google Scholar 

  169. Xie Y, Geng Z, Zhuang L, et al. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics, 2017, 7: 421–454

    Article  Google Scholar 

  170. Orlandi P, Morichetti F, Strain M J, et al. Photonic integrated filter with widely tunable bandwidth. J Lightwave Technol, 2014, 32: 897–907

    Article  Google Scholar 

  171. Fandiño J S, Muñoz P, Doménech D, et al. A monolithic integrated photonic microwave filter. Nat Photon, 2017, 11: 124–129

    Article  Google Scholar 

  172. Zhang W, Yao J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J Lightwave Technol, 2018, 36: 4655–4663

    Article  Google Scholar 

  173. Tang J, Hao T, Li W, et al. Integrated optoelectronic oscillator. Opt Express, 2018, 26: 12257–12265

    Article  Google Scholar 

  174. Lin I S, McKinney J D, Weiner A M. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultrawideband communication. IEEE Microw Wireless Compon Lett, 2005, 15: 226–228

    Article  Google Scholar 

  175. Khan M H, Shen H, Xuan Y, et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photon, 2010, 4: 117–122

    Article  Google Scholar 

  176. Wang J, Shen H, Fan L, et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat Commun, 2015, 6: 5957

    Article  Google Scholar 

  177. Zhang W, Zhang J, Yao J. Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper. In: Proceedings of IEEE Topical Meeting Microwave Photonics, Sapporo, 2014. 20–23

  178. Zhang W, Yao J. Photonic generation of linearly chirped microwave waveform with a large time-bandwidth product using a silicon-based on-chip spectral shaper. In: Proceedings of International Topical Meeting on Microwave Photonics (MWP), Paphos, 2015. 26–29

  179. Wu J, Xu X, Nguyen T G, et al. RF photonics: an optical microcombs’ perspective. IEEE J Sel Top Quantum Electron, 2018, 24: 1–20

    Google Scholar 

  180. Wang Z, van Gasse K, Moskalenko V, et al. A III-V-on-Si ultra-dense comb laser. Light Sci Appl, 2017, 6: e16260

    Article  Google Scholar 

  181. Wu R, Supradeepa V R, Long C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 2010, 35: 3234

    Article  Google Scholar 

  182. Chen Y, Wu K, Zhao F, et al. Loss compensated photonic true-time delay for phased-array antenna. IEEE Antenn Propag Soc Int Symp, 2004, 4: 4324–4327

    Article  Google Scholar 

  183. Wang X, Howley B, Chen M Y, et al. Fully- integrated 4-bit true time delay module using polymer optical switches and waveguide delay lines. In: Proceedings of the Integrated Photonics Research Applications, 2006

  184. Chen Y, Wu K, Zhao F, et al. Reconfigurable true-time delay for wideband phased-array antennas. In: Proceedings of SPIE, 2004. 5363: 125–130

    Article  Google Scholar 

  185. Horikawa K, Ogawa I, Ogawa H, et al. Photonic switched true time delay beam forming network integrated on silica waveguide circuits. In: Proceedings of 1995 IEEE MTT-S International Microwave Symposium, Orlando, 1995. 65–68

  186. Horikawa K, Ogawa I, Kitoh T, et al. Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications. In: Proceedings of Optical Fiber Communications, 1996. 100–101

  187. LeGrange J, Kasper A, Madsen C, et al. Demonstration of an integrated, tunable high resolution true time delay line. In: Proceedings of the 17th Annual Meeting IEEE Lasers Electro-Optics Society, 2004. 2: 790–791

    Google Scholar 

  188. Rasras M S, Madsen C K, Cappuzzo M A, et al. Integrated resonance-enhanced variable optical delay lines. IEEE Photon Technol Lett, 2005, 17: 834–836

    Article  Google Scholar 

  189. Horikawa K, Nakasuga Y, Ogawa H. Self-heterodyning optical waveguide beam forming and steering network integrated on Lithium Niobate substrate. IEEE Trans Microwave Theor Techn, 1995, 43: 2395–2401

    Article  Google Scholar 

  190. Ng W W, Yap D, Narayanan A A, et al. GaAs and silica-based integrated optical time-shift network for phased arrays. In: Proceedings of SPIE, 1994. 2155: 114–123

    Article  Google Scholar 

  191. Ng W, Yap D, Narayanan A, et al. High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays. IEEE Photon Technol Lett, 1994, 6: 231–234

    Article  Google Scholar 

  192. Stulemeijer J, van Vliet F E, Benoist K W, et al. Compact photonic integrated phase and amplitude controller for phasedarray antennas. IEEE Photon Technol Lett, 1999, 11: 122–124

    Article  Google Scholar 

  193. Flamand G, de Mesel K, Moerman I, et al. InP-based PIC for an optical phased-array antenna at 1.06 µm. IEEE Photon Technol Lett, 2000, 12: 876–878

    Article  Google Scholar 

  194. Moreira R L, Garcia J, Li W, et al. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications. IEEE Photon Technol Lett, 2013, 25: 1165–1168

    Article  Google Scholar 

  195. Sancho J, Bourderionnet J, Lloret J, et al. Integrable microwave filter based on a photonic crystal delay line. Nat Commun, 2012, 3: 1075

    Article  Google Scholar 

  196. Zhang W, Yao J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat Commun, 2018, 9: 1396

    Article  Google Scholar 

  197. Zhuang L, Roeloffzen C G H, Heideman R G, et al. Single-chip ring resonator-based 1 × 8 optical beam forming network in CMOS-compatible waveguide technology. IEEE Photon Technol Lett, 2007, 19: 1130–1132

    Article  Google Scholar 

  198. Zhuang L, Hoekman M, Beeker W, et al. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon Rev, 2013, 7: 994–1002

    Article  Google Scholar 

  199. Cardenas J, Foster M A, Sherwood-Droz N, et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt Express, 2010, 18: 26525–26534

    Article  Google Scholar 

  200. Morton P A, Cardenas J, Khurgin J B, et al. Fast thermal switching of wideband optical delay line with no long-term transient. IEEE Photon Technol Lett, 2012, 24: 512–514

    Article  Google Scholar 

  201. Xiang C, Davenport M L, Khurgin J B, et al. Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators. IEEE J Sel Top Quantum Electron, 2018, 24: 1–9

    Article  Google Scholar 

  202. Wang J, Ashrafi R, Adams R, et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Sci Rep, 2016, 6: 30235

    Article  Google Scholar 

  203. Pu M, Liu L, Xue W, et al. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator. Opt Express, 2010, 18: 6172–6182

    Article  Google Scholar 

  204. Lloret J, Sancho J, Pu M, et al. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator. Opt Express, 2011, 19: 12402

    Article  Google Scholar 

  205. Lloret J, Morthier G, Ramos F, et al. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter. Opt Express, 2012, 20: 10796

    Article  Google Scholar 

  206. Adams D B, Madsen C K. A novel broadband photonic RF phase shifter. J Lightwave Technol, 2008, 26: 2712–2717

    Article  Google Scholar 

  207. Morton P A, Khurgin J B. Microwave photonic delay line with separate tuning of the optical carrier. IEEE Photon Technol Lett, 2009, 21: 1686–1688

    Article  Google Scholar 

  208. Burla M, Marpaung D, Zhuang L, et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt Express, 2011, 19: 21475–21484

    Article  Google Scholar 

  209. Howley B, Wang X, Chen M, et al. Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration. J Lightwave Technol, 2007, 25: 883–890

    Article  Google Scholar 

  210. Meijerink A, Roeloffzen C G H, Meijerink R, et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas-part I: design and performance analysis. J Lightwave Technol, 2010, 28: 3–18

    Article  Google Scholar 

  211. Zhuang L M, Roeloffzen C G H, Meijerink A, et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas-part II: experimental prototype. J Lightwave Technol, 2010, 28: 19–31

    Article  Google Scholar 

  212. Marpaung D, Zhuang L, Burla M, et al. Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications. In: Proceedings of the 5th European Conference Antennas Propagation, Rome, 2011. 2623–2627

  213. Marpaung D, Zhuang L, Burla M, et al. Photonic integration and components development for a Ku-band phased array antenna system. In: Proceedings of International Topical Meeting on Microwave Photonics jointly held with the 2011 Asia-Pacific Microwave Photonics Conference, 2011. 458–461

  214. Burla M, Roeloffzen C G H, Zhuang L, et al. System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications. Appl Opt, 2012, 51: 789–802

    Article  Google Scholar 

  215. Zhuang L, Marpaung D, Burla M, et al. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt Express, 2011, 19: 23162–23170

    Article  Google Scholar 

  216. Burla M, Marpaung D, Zhuang L, et al. Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control. IEEE Photon Technol Lett, 2013, 25: 1145–1148

    Article  Google Scholar 

  217. Burla M, Marpaung D A I, Zhuang L, et al. Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas. J Lightwave Technol, 2014, 32: 3509–3520

    Article  Google Scholar 

  218. Horikawa K, Ogawa I, Kitoh T, et al. Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications. In: Proceedings of Optical Fiber Communications, 1996. 100–101

  219. Grosskopf G, Eggemann R, Ehlers H, et al. Maximum directivity beam-former at 60 GHz with optical feeder. IEEE Trans Antennas Propagat, 2003, 51: 3040–3046

    Article  Google Scholar 

  220. Liu W, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon, 2016, 10: 190–195

    Article  Google Scholar 

  221. Capmany J, Mora J, Munñoz P, et al. A microwave photonics transistor. In: Proceedings of IEEE Topical Meeting on Microwave Photonics 2013, Alexandria, 2013

  222. Perez D, Gasulla I, Capmany J. Software-defined reconfigurable microwave photonics processor. Opt Express, 2015, 23: 14640–14654

    Article  Google Scholar 

  223. Perez D, Gasulla I, Capmany J. Honeycomb lattice meshes for reconfigurable universal microwave photonics processors. In: Proceedings of SPIE/COS Photonics Asia, 2016

  224. Capmany J, Gasulla I, Perez D. Microwave photonics: the programmable processor. Nat Photon, 2016, 10: 6–8

    Article  Google Scholar 

  225. Zhuang L, Roeloffzen C G H, Hoekman M, et al. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2015, 2: 854–859

    Article  Google Scholar 

  226. Perez D, Gasulla I, Capmany J, et al. Reconfigurable lattice mesh designs for programmable photonic processors. Opt Express, 2016, 24: 12093

    Article  Google Scholar 

  227. Perez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core. Nat Commun, 2017, 8: 636

    Article  Google Scholar 

  228. Perez D, Gasulla I, Capmany J. Toward programmable microwave photonics processors. J Lightwave Technol, 2018, 36: 519–532

    Article  Google Scholar 

  229. Wang X, Zhou L, Li R, et al. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica, 2017, 4: 507–515

    Article  Google Scholar 

  230. Burla M, Khan M R H, Marpaung D A I, et al. Separate carrier tuning scheme for integrated optical delay lines in photonic beamformers. In: Proceedings of International Topical Meeting on Microwave Photonics, Singapore, 2011

  231. Perez D, Gasulla I, Capmany J, et al. Figures of merit for self-beating filtered microwave photonic systems. Opt Express, 2016, 24: 10087–10102

    Article  Google Scholar 

  232. Jinguji K, Kawachi M. Synthesis of coherent two-port lattice-form optical delay-line circuit. J Lightwave Technol, 1995, 13: 73–82

    Article  Google Scholar 

  233. Shao H, Yu H, Jiang X, et al. Large bandwidth and high accuracy photonic-assisted instantaneous microwave frequency estimation system based on an integrated silicon micro-resonator. In: Proceedings of 2014 IEEE 11th International Conference on de Group IV Photonics (GFP), Paris, 2014

  234. Ho K, Liaw S, Lin C. Efficient photonic mixer with frequency doubling. IEEE Photon Technol Lett, 1997, 9: 511–513

    Article  Google Scholar 

  235. Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system. Nature, 2014, 507: 341–345

    Article  Google Scholar 

  236. Pan S, Zhang Y. Microwave photonic radars. J Lightwave Technol, 2020, 38: 5450–5484

    Article  Google Scholar 

  237. Trajkovic M, Blache F, Debregeas H, et al. 55 GHz EAM bandwidth and beyond in InP active passive photonic integration platform. In: Proceedings of Conference on Lasers and Electro-Optics, 2018

  238. Burla M, Hoessbacher C, Heni W, et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 2019, 4: 056106

    Article  Google Scholar 

  239. Tzu T C, Sun K, Costanzo R, et al. Foundry-enabled high-power photodetectors for microwave photonics. IEEE J Sel Top Quantum Electron, 2019, 25: 3800111

    Article  Google Scholar 

  240. Lischke S, Peczek A, Morgan J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat Photon, 2021, 15: 925–931

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Yao or Jose Capmany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Capmany, J. Microwave photonics. Sci. China Inf. Sci. 65, 221401 (2022). https://doi.org/10.1007/s11432-021-3524-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3524-0

Keywords

Navigation