Skip to main content
Log in

Mid-infrared plasmonic silicon quantum dot/HgCdTe photodetector with ultrahigh specific detectivity

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Highly sensitive photodetectors operating at mid-infrared (MIR) wavelengths are urgently required for the applications of astronomy, optical communication, security monitoring, and so forth. However, further promoting the sensitivity in conventional MIR devices for a higher detectivity is challenging. Among the potential strategies, integrating localized surface plasmon resonance with MIR semiconductors is a promising approach to developing high-performance optoelectronics. Here we demonstrate a high-sensitivity boron (B)-doped silicon quantum dot (Si-QD)/HgCdTe (MCT) MIR photodetector. Because of plasmon-induced hot-hole tunneling and enhanced light absorption, the hybrid photodetector exhibits a high specific detectivity of ∼1.6 × 109 cm·Hz1/2·W−1 (Jones) and a high-speed response (∼224 ns for the rise time and ∼580 ns for the fall time) at room temperature. Furthermore, the device achieves high-performance spectral blackbody detection with a peak detectivity of up to 1.6×1011 Jones at ∼5.8 µm under a cryogenic environment of 77 K, higher than that of bare MCT. This prominent enhancement can be attributed to the further suppression of hot-hole cooling due to a reduced phonon population at low temperatures, which facilitates more efficient hot-carrier extraction and contributes to ultrahigh sensitivity. The plasmonic material-integrated MCT architecture can pave the way for developing high-performance MIR photodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lu X W, Jiang P, Bao X H. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nat Commun, 2019, 10: 138

    Article  Google Scholar 

  2. Konstantatos G, Sargent E H. Nanostructured materials for photon detection. Nat Nanotech, 2010, 5: 391–400

    Article  Google Scholar 

  3. Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11: 726–732

    Article  Google Scholar 

  4. Tang X, Ackerman M M, Chen M L, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat Photonics, 2019, 13: 277–282

    Article  Google Scholar 

  5. Wang P, Xia H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small, 2019, 15: 1904396

    Article  Google Scholar 

  6. Yu Y F, Miao F, He J, et al. Photodetecting and light-emitting devices based on two-dimensional materials. Chin Phys B, 2017, 26: 036801

    Article  Google Scholar 

  7. Ge H N, Xie R Z, Guo J X, et al. Artificial micro- and nano-structure enhanced long and very long-wavelength infrared detectors. Acta Phys Sin, 2022, 71: 110703

    Article  Google Scholar 

  8. An J R, Sun T, Wang B, et al. Efficient graphene in-plane homogeneous p-n-p junction based infrared photodetectors with low dark current. Sci China Inf Sci, 2021, 64: 140403

    Article  Google Scholar 

  9. Liu X, Wang W H, Yang F, et al. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Sci China Inf Sci, 2021, 64: 140404

    Article  Google Scholar 

  10. Qiu P P, Qiu W B, Lin Z L, et al. Ultra-compact tunable graphene-based plasmonic multimode interference power splitter in mid infrared frequencies. Sci China Inf Sci, 2017, 60: 082402

    Article  Google Scholar 

  11. McCullough P R, Regan M, Bergeron L, et al. Quantum efficiency and quantum yield of an HgCdTe infrared sensor array. Publ Astron Soc Pac, 2008, 120: 759–776

    Article  Google Scholar 

  12. Wang Y, Gu Y, Cui A L, et al. Fast uncooled mid-wavelength infrared photodetectors with heterostructures of van der Waals on epitaxial HgCdTe. Adv Mater, 2022, 34: 2107772

    Article  Google Scholar 

  13. Ge H N, Xie R Z, Chen Y F, et al. Skin effect photon-trapping enhancement in infrared photodiodes. Opt Express, 2021, 29: 22823–22837

    Article  Google Scholar 

  14. Camargo E G, Ueno K, Kawakami Y, et al. Miniaturized InSb photovoltaic infrared sensor operating at room temperature. Opt Eng, 2008, 47: 014402

    Article  Google Scholar 

  15. Peng M, Xie R Z, Wang Z, et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci Adv, 2021, 7: eabf7358

    Article  Google Scholar 

  16. Zhou J, Zhou Y, Shi Y, et al. A compact polarization-integrated long wavelength infrared focal plane array based on InAs/GaSb superlattice. Sci China Inf Sci, 2022, 65: 122407

    Article  Google Scholar 

  17. Rogalski A. HgCdTe infrared detector material: history, status and outlook. Rep Prog Phys, 2005, 68: 2267–2336

    Article  Google Scholar 

  18. Lei W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl Phys Rev, 2015, 2: 041303

    Article  Google Scholar 

  19. Martyniuk P, Antoszewski J, Martyniuk M, et al. New concepts in infrared photodetector designs. Appl Phys Rev, 2014, 1: 041102

    Article  Google Scholar 

  20. Rogalski A, Razeghi M, Narrow gap semiconductor photodiodes. P Soc Photo-Opt Ins, 1998, 3287: 2–13

    Google Scholar 

  21. Meinardi F, Ehrenberg S, Dhamo L, et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat Photon, 2017, 11: 177–185

    Article  Google Scholar 

  22. Linehan K, Doyle H. Size controlled synthesis of silicon nanocrystals using cationic surfactant templates. Small, 2014, 10: 584–590

    Article  Google Scholar 

  23. Mastronardi M L, Maier-Flaig F, Faulkner D, et al. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett, 2012, 12: 337–342

    Article  Google Scholar 

  24. Portolés M J L, Diez R P, Dell’Arciprete M L, et al. Understanding the parameters affecting the photoluminescence of silicon nanoparticles. J Phys Chem C, 2012, 116: 11315–11325

    Article  Google Scholar 

  25. Hayat A, Tong J H, Chen C, et al. Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities. Sci China Inf Sci, 2020, 63: 182401

    Article  Google Scholar 

  26. Maier-Flaig F, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett, 2013, 13: 475–480

    Article  Google Scholar 

  27. Puzzo D P, Henderson E J, Helander M G, et al. Visible colloidal nanocrystal silicon light-emitting diode. Nano Lett, 2011, 11: 1585–1590

    Article  Google Scholar 

  28. Rowe D J, Jeong J S, Mkhoyan K A, et al. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett, 2013, 13: 1317–1322

    Article  Google Scholar 

  29. Ni Z Y, Pi X D, Zhou S, et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals. Adv Opt Mater, 2016, 4: 700–707

    Article  Google Scholar 

  30. Ni Z Y, Ma L L, Du S C, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 2017, 11: 9854–9862

    Article  Google Scholar 

  31. Chang C C, Sharma Y D, Kim Y S, et al. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett, 2010, 10: 1704–1709

    Article  Google Scholar 

  32. Zhan Q Q, Qian J, Li X, et al. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology, 2010, 21: 055704

    Article  Google Scholar 

  33. Yu Y F, Sun Y, Hu Z L, et al. Fast photoelectric conversion in the near-infrared enabled by plasmon-induced hot-electron transfer. Adv Mater, 2019, 31: 1903829

    Article  Google Scholar 

  34. Ng C, Cadusch J J, Dligatch S, et al. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano, 2016, 10: 4704–4711

    Article  Google Scholar 

  35. Pi X D, Delerue C. Tight-binding calculations of the optical response of optimally P-Doped Si nanocrystals: a model for localized surface plasmon resonance. Phys Rev Lett, 2013, 111: 177402

    Article  Google Scholar 

  36. Simone G, Dyson M J, Meskers S C J, et al. Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv Funct Mater, 2020, 30: 1904205

    Article  Google Scholar 

  37. Zhang P, Zhang Y, Wang W H, et al. Multispectral photodetectors based on 2D material/Cs3Bi2I9 heterostructures with high detectivity. Nanotechnology, 2021, 32: 415202

    Article  Google Scholar 

  38. Chen Y F, Wang Y, Wang Z, et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat Electron, 2021, 4: 357–363

    Article  Google Scholar 

  39. Chen B L, Jiang W Y, Yuan J R, et al. SWIR/MWIR InP-Based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells. IEEE J Quantum Electron, 2011, 47: 1244–1250

    Article  Google Scholar 

  40. Zussman A, Levine B F, Kuo J M, et al. Extended long-wavelength λ = 11–15-µm GaAs/AlxGa1−x As quantum-well infrared photodetectors. J Appl Phys, 1991, 70: 5101–5107

    Article  Google Scholar 

  41. Hansen G L, Schmit J L, Casselman T N. Energy gap versus alloy composition and temperature in Hg1−xCdxTe. J Appl Phys, 1982, 53: 7099–7101

    Article  Google Scholar 

  42. Krishnamurthy S, Chen A B, Sher A, et al. Temperature dependence of band gaps in HgCdTe and other semiconductors. J Electron Mater, 1995, 24: 1121–1125

    Article  Google Scholar 

  43. Garcia G, Buonsanti R, Runnerstrom E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett, 2011, 11: 4415–4420

    Article  Google Scholar 

  44. Agrawal A, Kriegel I, Milliron D J. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J Phys Chem C, 2015, 119: 6227–6238

    Article  Google Scholar 

  45. Kasani S, Zheng P, Bright J, et al. Tunable visible-light surface plasmon resonance of molybdenum oxide thin films fabricated by E-beam evaporation. ACS Appl Electron Mater, 2019, 1: 2389–2395

    Article  Google Scholar 

  46. Mubeen S, Hernandez-Sosa G, Moses D, et al. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett, 2011, 11: 5548–5552

    Article  Google Scholar 

  47. Chuang C H, Chen X B, Burda C. Femtosecond time-resolved hot carrier energy distributions of photoexcited semiconductor quantum dots. Annalen Der Physik, 2013, 525: 43–48

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2017YFA0205700), National Natural Science Foundation of China (Grant No. 61927808), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), China Postdoctoral Science Foundation (Grant Nos. 2022T150121, 2021M690625), and Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2021K106B). The authors would like to thank Department of Infrared Devices, Shanghai Institute of Technical Physics, Chinese Academy of Sciences and Yang Wang for their help with this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanfang Yu or Zhenhua Ni.

Additional information

Supporting information

Appendixes A–C. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Tong, Z., Zhang, X. et al. Mid-infrared plasmonic silicon quantum dot/HgCdTe photodetector with ultrahigh specific detectivity. Sci. China Inf. Sci. 66, 142404 (2023). https://doi.org/10.1007/s11432-022-3549-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3549-7

Keywords

Navigation