Skip to main content
Log in

Soft tissue modelling through autowaves for surgery simulation

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Modelling of soft tissue deformation is of great importance to virtual reality based surgery simulation. This paper presents a new methodology for simulation of soft tissue deformation by drawing an analogy between autowaves and soft tissue deformation. The potential energy stored in a soft tissue as a result of a deformation caused by an external force is propagated among mass points of the soft tissue by non-linear autowaves. The novelty of the methodology is that (i) autowave techniques are established to describe the potential energy distribution of a deformation for extrapolating internal forces, and (ii) non-linear materials are modelled with non-linear autowaves other than geometric non-linearity. Integration with a haptic device has been achieved to simulate soft tissue deformation with force feedback. The proposed methodology not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply changing diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arena P, Fortuna L, Branciforte M (1999) Reaction-diffusion CNN algorithms to generate and control artificial locomotion. IEEE Trans Circuit Syst 46(2):253–260

    Article  Google Scholar 

  2. Arena P, Basile A, Fortuna L, Frasca M (2004) CNN wave based computation for robot navigation planning. Proc Int Symp Circuit Syst 5:V-500–V-503

    Google Scholar 

  3. Baraff D, Witkin A (1998) Large steps in cloth simulation. In: Proceedings of international conference on computer graphics and interactive techniques, Orlando, USA, pp 43–54

  4. Basdogan C, De S, Kim J, Muniyandi M, Kim H, Srinivasan MA (2004) Haptics in minimally invasive surgical simulation and training. IEEE Comput Graph Appl 24(2):56–64

    Article  Google Scholar 

  5. Bejan A (1993) Heat transfer. Wiley, New York

    Google Scholar 

  6. Bockholt U, Müller W, Ecke U, Klimek L (1999) Real-time simulation of tissue deformation for the nasal endoscopy simulator (NES). Comput Aid Surg 4(5):281–285

    Article  Google Scholar 

  7. Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86(3):490–503

    Article  Google Scholar 

  8. Choi K, Sun H, Heng PA (2003) Interactive deformation of tissues with haptic feedback for medical learning. IEEE Trans Inform Technol Biomed 7(4):358–363

    Article  Google Scholar 

  9. Chua LO, Yang L (1988) Cellular neural network: theory. IEEE Trans Circuit Syst 35(10):1257–1272

    Article  MATH  MathSciNet  Google Scholar 

  10. Chua LO, Hasler M, Moschytz GS, Neirynck J (1993) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuit Syst 40(3):147–156

    MATH  Google Scholar 

  11. Ciarlet PG (1988) Mathematical elasticity. Vol 1: Three-dimensional elasticity. Elsevier, Amsterdam

  12. Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5(1):62–73

    Article  Google Scholar 

  13. Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Vis Comput 16(8):437–452

    Article  MATH  Google Scholar 

  14. Davydov VA, Davydov NV, Morozov VG, Stolyarov MN, Yamaguchi T (2004) Autowaves in the moving excitable media. Condens Matter Phys 7(3):565–578

    Google Scholar 

  15. Debunne G, Desbrun M, Cani MP, Barr AH (2001) Dynamic real-time deformations using space and time adaptive sampling. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, Los Angeles, USA, pp 31–36

  16. Foskey M, Otaduy MA, Lin MC (2002) ArtNova: touch-enabled 3D model design. In: Proceedings of IEEE virtual reality 2002, Orlando, USA, pp 119–126

  17. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Grekhova MT (1981) Autowave processes in systems with diffusion. Academy of Science, USSR, Gorky

  19. James D, Pai D (1999) Artdefo accurate real time deformable objects. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, Los Angeles, USA, pp. 65–72

  20. Karniadakis GE, Robert M (2003) Parallel Scientific Computing in C++ and MPI: a seamless approach to parallel algorithms and their implementation. Cambridge University Press, New York

    MATH  Google Scholar 

  21. Kenedi RM, Gibson T, Evans JH, Barbenel JC (1975) Tissues mechanics. Phys Med Biol 20(5):699–717

    Article  Google Scholar 

  22. Kerdok AE, Cotin SM, Ottensmeyer MP, Galea AM, Howe RD, Dawson SL (2003) Truth cube: establishing physical standards for soft tissue simulation. Med Image Anal 7(3):283–291

    Article  Google Scholar 

  23. Kozek T, Chua LO, Roska T, Wolf D, Tetzlaff R, Puffer F, Karoly Lotz (1995) Simulating nonlinear waves and partial differential equations via CNN–Part II: typical examples. IEEE Trans Circuit Syst 42(10):816–820

    Article  Google Scholar 

  24. Krinsky VI, Biktashev VN, Efimov IR (1991) Autowave principles for parallel image processing. Physics D 49:247–253

    Article  Google Scholar 

  25. Maurel W, Wu Y, Thalmann NMTD (1998) Biochemical models for tissue simulation. ESPRIT Basic Research Series, Springer, Berlin Heidelberg New York

  26. Meier U, Lopez O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Meth Program Biomed 77(3):183–197

    Article  Google Scholar 

  27. Monserrat C, Meier U, Alcaniz M, Chinesta F, Juan MC (2001) A new approach for the real-time simulation of tissue deformations in surgery simulation. Comput Meth Program Biomed 64:77–85

    Article  Google Scholar 

  28. Murray JD (1989) Mathematical biology. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  29. Sensable Technologies (2004) OpenHaptics ToolKit-Programmer’s Guide

  30. Ottensmeyer MP (2003) In vivo measurement of solid organ visco-elastic properties. In: Westwood JD, Hoffman HM, Robb RA, Stredney D (eds) Proceedings of medicine meets virtual reality 02/10. IOS Press, Newport Beach, pp 328–333

  31. Perez-Munuzuri V, Perez-Villar V, Chua LO (1993) Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths. IEEE Trans Circuit Syst 40(3):174–181

    MATH  Google Scholar 

  32. Picinbono G, Lombardo J-C, Delingette H, Ayache N (2002) Imporving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J Vis Comput Anim 13:147–167

    Article  MATH  Google Scholar 

  33. Picinbono G, Delingette H, Ayache N (2003) Non-linear anisotropic elasticity for real-time surgery simulation. Graph Models 65(5):305–321

    Article  MATH  Google Scholar 

  34. Popov EP (1990) Engineering mechanics of solids. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  35. Roska T, Chua LO, Wolf D, Kozek T, Tetzlaff R, Puffer F (1995) Simulation nonlinear waves and partial differential equations via CNN—Part I: Basic Techniques. IEEE Trans Circuit Syst 42(10):807–815

    Article  Google Scholar 

  36. Rotnes JS, Kaasa J, Westgaard G, Eriksen EM, Hvidsten PQ, Strom K, Sorhus V, Halbwachs Y, Elle OJ, Fosse E (2001) Realism in surgical simulators with free-form geometric modeling. Int Congr Ser 1230:1032–1037

    Article  Google Scholar 

  37. Schwartz J-M, Denninger M, Rancourt D, Moisan C, Laurendeau D (2005) Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med Image Anal 9(2):103–112

    Article  Google Scholar 

  38. Slavova A (2003) Cellular neural networks: dynamics and modelling. Kluwer, Dordrecht

    MATH  Google Scholar 

  39. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. Comput Graph 21(4):205–214

    Article  Google Scholar 

  40. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Wiley, New York

    Google Scholar 

  41. Zhang Y, Prakash EC, Sung E (2004) Face alive. J Vis Language Comput 15(2):125–160

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Australian Research Council (ARC) Discovery grant (ARC Discovery: DP034946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Zhong.

Appendix

Appendix

Consider two adjacent points \({\vec{P}_i}\) and \(\vec{P}_{j},\) where the potentials are \(U_{{\vec{P}_{i}}}\) and \(U_{{\vec{P}_{j}}},\) respectively. The potential at any point \(\vec{P}\) between these two points is regarded as a function of the distance between point \(\vec{P}_{i}\) and point \(\vec{P}.\) Therefore, the following relationships can be written:

$$ \begin{aligned}& U = U(l) \\& l = {\left\| {\vec{P} - \vec{P}_{i}} \right\|} \\ \end{aligned}. $$
(27)

Thus:

$$ \nabla _{{\vec{P}_{i}}} U = \frac{{{\rm d}U}}{{{\rm d}l}}\nabla _{{\vec{P}_{i}}} l = - \frac{{{\left| {U_{{\vec{P}_{j}}} - U_{{\vec{P}_{i}}}} \right|}}}{{{\left\| {\vec{P}_{j} - \vec{P}_{i}} \right\|}}}{{\overrightarrow{P_{i} P_{j}}}}, $$
(28)

where \({{\overrightarrow{P_{i} P_{j}}}} = \frac{{\vec{P}_{j} - \vec{P}_{i}}}{{{\left\| {\vec{P}_{j} - \vec{P}_{i}} \right\|}}}\) and \({\left| {U_{{\vec{P}_{j}}} - U_{{\vec{P}_{i}}}} \right|}\) is the magnitude of the potential change between point \({\vec{P}_i}\) and point \(\vec{P}_{j}.\)

Substituting Eq. 28 into Eq. 17, the force between point \({\vec{P}_i}\) and point \(\vec{P}_{j}\) is

$$ \vec{f}_{{ij}} = D\frac{{{\left| {U_{{\vec{P}_{j}}} - U_{{\vec{P}_{i}}}} \right|}}}{{{\left\| {\vec{P}_{j} - \vec{P}_{i}} \right\|}}}{{\overrightarrow{P_{i}P_{j}}}}. $$
(29)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Shirinzadeh, B., Alici, G. et al. Soft tissue modelling through autowaves for surgery simulation. Med Bio Eng Comput 44, 805–821 (2006). https://doi.org/10.1007/s11517-006-0084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0084-7

Keywords

Navigation