Skip to main content
Log in

Reliability and accuracy of heart rate variability metrics versus ECG segment duration

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Despite the exponential growth in heart rate variability (HRV) research, the reproducibility and reliability of HRV metrics continues to be debated. We estimated the reliability of 11 metrics calculated from 5 min records. We also compared the accuracy of the HRV metrics calculated from ECG records spanning 10 s to 10 min as compared with the metrics calculated from 5 min records. The mean heart rate was more reproducible and could be more accurately estimated from very short segments (<1 min) than any of the other HRV metrics. HRV metrics that effectively highpass filter the R–R interval series were more reliable than the other metrics and could be more accurately estimated from very short segments. This indicates that most of the HRV is caused by drift and nonstationary effects. Metrics that are sensitive to low frequency components of HRV have poor repeatability and cannot be estimated accurately from short segments (<10 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger CA, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardovascular control. Science 213(4504):220–222

    Article  Google Scholar 

  2. Amara C, Wolfe L (1998) Reliability of noninvasive methods to measure cardiac autonomic function. Can J Appl Physiol 23(4):396–408

    Google Scholar 

  3. Bernardi L, Valle F, Coco M, Calciati A, Sleight P (1996) Physical activity influences heart rate variability and very-low frequency components in Holter electrocardiogram. Cardiovasc Res 32(2):234–227

    Article  Google Scholar 

  4. Bragge T, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2005) High-resolution QRS fiducial point corrections in sparsely sampled ECG recordings. Physiol Meas 26(5):743–751 [Online]. Available: http://dx.doi.org/10.1088/0967-3334/26/5/013

    Google Scholar 

  5. Brembilla-Perrot B, Houriez P, Jacquemin L, Houplon P, Claudon O, Danchin N (2004) Reproducibility of heart rate variability in chronic phase myocardial infaction. Arch Mal Coeur Vaiss 2(2):245–252

    Google Scholar 

  6. Breuer H, Skyschally A, Wehr M, Schulz R, Heusch G (1992) Poor reproducibility of heart rate variability indices. Z Kardiol 81(9):475–481

    Google Scholar 

  7. Buchman TG, Stein PK, Goldstein B (2002) Heart rate variability in critical illness and critical care. Curr Opin Critic Care 8(4):311–315

    Article  Google Scholar 

  8. Burger A, Charlamb M, Weinrauch L, DElia J (1997) Short- and long-term reproducibility of heart rate variability in patients with long-standing type I diabetes mellitus. Am J Cardiol 80(9):1198–1202

    Article  Google Scholar 

  9. Carrasco S, Gonzßlez R, Gaitßn MJ, Yez O (2003) Reproducibility of heart rate variability from short-term recordings during five manoeuvres in normal subjects. J Med Eng Technol 27(6):241–248 [Online]. Available: http://dx.doi.org/10.1080/0309190031000111380

  10. Christov II (2004) Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed Eng Online 3(1):28 [Online]. Available: http://dx.doi.org/10.1186/1475-925X-3-28

  11. Christov II, Daskalov IK (1999) Filtering of electromyogram artifacts from the electrocardiogram. Med Eng Phys 21(10):731–736

    Article  Google Scholar 

  12. Christov II, Dotsinsky IA, Daskalov IK (1992) High-pass filtering of ECG signals using QRS elimination. Med Biol Eng Comput 30(2):253–256

    Article  Google Scholar 

  13. Cloarce-Blanchard L, Funck-Brentano C, Lipski M, Jaillon P, Macquin-Mavier I (1997) Repeatability of spectral components of short-term blood pressure and heart rate variability during acute sympathetic activation in healthy young male subjects. Clin Sci (Lond) 93(1):21–28

    Google Scholar 

  14. D’Addio G, Acanfora D, Pinna G, Maestri R, Furgi G, Piconne C, Rengo F (1998) Reproducibility of short- and long-term Poincare plot parameters compared with frequency-domain hrv indexes in congestive heart failure. Comput Cardiol pp 381–384

  15. Daskalov I, Christov I (1997) Improvement of resolution in measurement of electrocardiogram RR intervals by interpolation. Med Eng Phys 19(4):375–379

    Article  Google Scholar 

  16. Daskalov IK, Christov IW (1999) Electrocardiogram signal preprocessing for automatic detection of QRS boundaries. Med Eng Phys 21(1):37–44

    Article  Google Scholar 

  17. Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA, Kromhout D (1997) Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. Am J Epidemiol 145(10):899–908

    Google Scholar 

  18. Dionne I, White M, Tremblay M (2002) The reproducibility of power spectrum analysis of heart rate variability before and after a standardized meal. Physiol Behav 75(3):267–270

    Article  Google Scholar 

  19. Duanping L, Barnes R, Chambless L, Heiss G (1996) A computer algorithm to impute interrupted heart rate data for the spectral analysis of heart rate variability—the aric study. Comput Biomed Res 29(2):140–151

    Article  Google Scholar 

  20. Franke W, Buchanan D, Lee K (2001) Reproducibility of the autonomic and cardiovascular responses to maximam lower body negative pressure. Med Sci Sports Exerc 33(5):S209

    Article  Google Scholar 

  21. Freed L, Stein K, Gordong M, Urban M, Kligfield P (1994) Reproducibility of power spectral measures of heart rate variability obtained from short-term sampling periods. Am J Cardiol 74(9):972–973

    Article  Google Scholar 

  22. Fusheng Y, Bo H, Qingyu T (2001) Approximate entropy and its application in biosignal analysis. In: Akay M (ed) Nonlinear biomedical signal processing, vol II: dynamic analysis and modeling, ser. Biomedical engineering. IEEE Press, New York

  23. Gerritsen J, TenVoorde B, Decker J, Kingma R, Kostense P, Bouter L, Heethaar R (2003) Measures of cardiovascular autonomic nernous function: agreement, reproducibility, and reference values in middle age and elderly subjects. Diabetologica 46(3):330–338

    Google Scholar 

  24. Ghuran A, Malik M (1999) Heart rate variability—state of the art. Cardiac Electrophysiol Rev 3:283–285

    Article  Google Scholar 

  25. Hamilton R, Mckenchnie P, Macfarlane P (2004) Can cardiac vagal tone be estimated from the 10-second ECG? Int J Cardiol 95(1):109–115

    Article  Google Scholar 

  26. Hedman AE, Hartikainen JEK (1999) Has non-linear analysis of heart rate variability any practical value? Cardiac Electrophysiol Rev 3:286–289

    Article  Google Scholar 

  27. Kaplan D, Furman M, Pincus S, Ryan S, Lipsitz L, Goldberger A (1991) Aging and the complexity of cardiovascular dynamics. Biophys J 59:945–949

    Article  Google Scholar 

  28. Kerrigan D, Armstrong WJ, Levine S, Ehrman J (2001) Reproducibility of heart rate variability during exercise. Med Sci Sports Exerc 59(44):S202

    Article  Google Scholar 

  29. Klingenheben T, Zabel M, Just H, Hohnloser S (1993) Reproducibility of heart rate variability measures as determined from repeated holter monitorings. Z Kardiol 82(5):302–308

    Google Scholar 

  30. Kluess H, Wood R, Stone D, Weslch M (2001) Reliability of heart rate variability during dynamic handgrip exercise. Med Sci Sports Exerc 33(5):S203

    Article  Google Scholar 

  31. Kowalewski M, Urban M (2004) Short- and long-term reproducibility of autonomic measures in supine and standing positions. Clin Sci (Lond) 106(1):61–66

    Article  Google Scholar 

  32. Lake D, Richman J, Griffin M, Moorman J (2002) Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 283:R789–R797

    Google Scholar 

  33. Lawrence G, Home P, Murray A (1992) Repeatability of measurements and sources of variability in tests of cardiovascular autonomic function. Br Heart J 68(2):205–211

    Article  Google Scholar 

  34. Lee K, Buchanan D, Flatau A, Franke W (2004) Reproducibility of the heart rate variability responses to graded lower negative pressure. Eur J Appl Physiol 92(1-2):106–113

    Article  Google Scholar 

  35. Liao D, Barnes R, Chambless L, Heiss G (1996) A computer algorithm to impute interrupted heart rate data for the spectral analysis of heart rate variability: the aric study. Comput Biomed Res 29(2):140–151

    Article  Google Scholar 

  36. Malpas SC (2002) Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol Heart Circ Physiol 282:H6–H20

    Google Scholar 

  37. Marks B, Lightfoot J (1999) Reproducibility of resting heart rate variability with short sampling periods. Can J Appl Physiol 24(24):337–348

    Google Scholar 

  38. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30-46; corrections in no. 4, p 390

  39. Mehta S, Super D, Salvator A, Fradley L, Connuck D, Kaufman E (2002) Heart rate variability by triangular index in infants exposed prenatally to cocaine. Ann Noninvasive Electrocardiol 7(4):374–378

    Article  Google Scholar 

  40. Moody GB, Mark RG, Goldberger AL (2001) PhysioNet: a web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 20(3):70–75

    Article  Google Scholar 

  41. Myrtek M (1990) Covariation and reliability of ECG parameters during 24-hour monitoring. Int J Psychophysiol 10(2):117–124

    Article  Google Scholar 

  42. Palazzolo J, Estafanous F, Murray P (1998) Entropy measures of heart rate variation in conscious dogs. Am J Heart Circ Physiol 274(4):H1099–H1105

    Google Scholar 

  43. Pincus S (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2297–2301

    Article  MATH  MathSciNet  Google Scholar 

  44. Pincus S (1992) Approximating markov chains. Proc Natl Acad Sci USA 89:4432–4436

    Article  MATH  MathSciNet  Google Scholar 

  45. Pincus S (2001) Assessing serial irregularity and its implications for health. Ann N Y Acad Sci 954:245–267

    Article  Google Scholar 

  46. Pincus S, Goldberger A (1994) Physiological time series analysis: what does regularity quantify? Am J Physiol Heart Circ Physiol 266:H1643–H1656

    Google Scholar 

  47. Pincus S, Kalman R (1997) Not all (possibly) "random" sequences are created equal. Proc Natl Acad Sci USA 94(8):3513–3518

    Article  MATH  MathSciNet  Google Scholar 

  48. Pincus S, Keefe D (1992) Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol Endocrinol Metab 262:E741–E754

    Google Scholar 

  49. Pincus S, Singer B (1996) Randomness and degrees of irregularity. Proc Natl Acad Sci USA 93:2083–2088

    Article  MATH  MathSciNet  Google Scholar 

  50. Pitzalis M, Mastropasqua F, Massari F, Forleo C, DiMaggio M, Passantino A, Colombo R, DiBiase M, Rizzon P (1996) Short- and long-term reproducibility of time and frequency domain heart rate variability measurements in normal subjects. Cardiovasc Res 32(2):226–233

    Article  Google Scholar 

  51. Ponikowski P, Piepoli M, Amandi A, Chua T, Harrington D, Volterrani M, Colombo R, Mazzuero G, Giordano A, Coats A (1996) Reproducibility of heart rate variability measures in patients with chronic failure. Clin Sci (Lond) 91(4):391–398

    Google Scholar 

  52. Saul JP (1990) Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. News Physiol Sci 5:32–37

    Google Scholar 

  53. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  Google Scholar 

  54. Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH (1998) Five minute recordings of heart rate variability for population studies: repeatability and age–sex characteristics. Heart 80(2):156–162

    Google Scholar 

  55. Stein P, Rich M, Rottman J, Kleiger R (1995) Stability of index of heart rate variability in patients with congestive heart failure. Am Heart J 129(5):975–981

    Article  Google Scholar 

  56. Taverner D, Nunan T, Tonkin A (1996) Reproducibility of of conventional and power spectral measurements of cardiovascular sympathetic activation in normal subjects. Clin Exp Pharmacol Physiol 23(9):804–806

    Article  Google Scholar 

  57. TF of the European Society of Cardiology, the North American Society of Pacing, and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Google Scholar 

  58. Toyry J, Mantysaari M, Hartikainen J, Lansimies E (1995) Day-to-day variability of cardiac autonomic regulation parameters in normal subjects. Clin Physiol (Oxford) 15(1):39–46

    Google Scholar 

  59. vandeBorne P, Montano N, Zimmerman B, Pagani M, Somers V (1997) Relationship between repeated measures of hemodynamics, muscle sympathetic nerve activity, and their oscillations. Circulation 96(12):4326–4332

    Google Scholar 

  60. Vanhoogenhuyze D, Weinstein N, Martin G, Weiss J, Schaad J, Sahyouni X, Fintel D, Remme W, Singer D (1991) Reproducibility and relation to mean heart rate of heart rate variability in normal subjects. Am J Cardiol 68(17):1668–1676

    Article  Google Scholar 

  61. Vardas P, Kochiadakis G, Orfanakis A, Kalaitzakis M, Manios E (1994) Intraindividual reproducibility of heart-rate-variability before and during postural tilt in patients with syncope of unknown origin. Pacing Clin Electrophysiol 17(11):2207–2210

    Article  Google Scholar 

  62. Winsley R, Armstrong N, Bywater K, Fawkner S (2003) Reliability of heart rate variability measures at rest and during light exercise in children. Br J Sports Med 37(6):550–552

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Phyllis Stein and Rochelle Goldsmith for contributing their data to PhysioBank, and to the anonymous referees for their thorough revision of the original manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateo Aboy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNames, J., Aboy, M. Reliability and accuracy of heart rate variability metrics versus ECG segment duration. Med Bio Eng Comput 44, 747–756 (2006). https://doi.org/10.1007/s11517-006-0097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0097-2

Keywords

Navigation