Skip to main content

Advertisement

Log in

Comparison of trabecular bone anisotropies based on fractal dimensions and mean intercept length determined by principal axes of inertia

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The mechanical quality of trabecular bone depends on both its stiffness and its strength characteristics, which can be predicted indirectly by the combination of bone volume fraction and architectural anisotropy. To analyze the directional anisotropy of the trabecular bone, we applied the fractal geometry technique to plain radiographs. The anisotropy of the bone was quantified from an ellipse, based on the directional fractal dimensions (FD), by the principal axes of inertia. The anisotropies based on the FD were compared with those determined using the common method of mean intercept length (MIL). The directional FD gave the fractal information obtained from a projection along the MIL orientation. For this reason, the spatial variations associated with the bone length in any direction were manifested in a related frequency band of the power spectrum determined along the direction. The directional FD and MIL plots were highly correlated, although they originated from quite different geometries. Of the angle, premolar, and incisor regions of the human mandible, the anisotropies calculated using both FD and MIL showed the highest correlation in the trabecular bone of the angle region. The method using directional FDs as determined by the principal axis of inertia measures the anisotropy directly, using two-dimensional plain radiographs. This kind of method will be a useful to provide better estimates of bone quality in vivo compared with the density measurements alone, especially for the indirect diagnosis of jawbone quality in dental clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brunet-Imbault B, Lemineur G, Chappard C, Harba R, Benhamou CL (2005) A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform. BMC Med Imaging 5:4

    Article  Google Scholar 

  2. Chappard C, Brunet-Imbault B, Lemineur G, Giraudeau B, Giraudeau A, Harba R, Benhamou CL (2005) Anisotropy changes in post-menopausal osteoporosis: characterization by a new index applied to trabecular bone radiographic images. Osteoporos Int 16:1193–1202

    Article  Google Scholar 

  3. Choel L, Last D, Duboeuf F, Seurin MJ, Lissac M, Briguet A, Guillot G (2004) Trabecular alveolar bone microarchitecture in the human mandible using high resolution magnetic resonance imaging. Dentomaxillofac Radiol 33:177–182

    Article  Google Scholar 

  4. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40

    Article  Google Scholar 

  5. Cruz-Orive LM, Karlsson LM, Larsen SE, Wainschtein F (1992) Characterizing anisotropy: a new concept. Micron Microsc Acta 23:75–76

    Article  Google Scholar 

  6. Geraets WG, Van der Stelt PF, Lips P, Elders PJM, Van Ginkel FC, Burger EH (1997) Orientation of the trabecular pattern of the distal radius around the menopause. J Biomech 30:363–370

    Article  Google Scholar 

  7. Geraets WG, van der Stelt PF (2000) Fractal properties of bone. Dentomaxillofac Radiol 29:144–153

    Article  Google Scholar 

  8. Giesen EB, van Eijden TM (2000) The three-dimensional cancellous bone architecture of the human mandibular condyle. J Dent Res 79:957–963

    Google Scholar 

  9. Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  Google Scholar 

  10. Jett S, Shrout MK, Mailhot JM, Potter BJ, Borke JL (2004) An evaluation of the origin of trabecular bone patterns using visual and digital image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:598–604

    Article  Google Scholar 

  11. Jiang C, Giger ML, Chinander MR, Martell JM, Kwak S, Favus MJ (1999) Characterization of bone quality using computer-extracted radiographic features. Med Phys 26:872–879

    Article  Google Scholar 

  12. Jiang C, Pitt RE, Bertram JE, Aneshansley DJ (1999) Fractal-based image texture analysis of trabecular bone architecture. Med Biol Eng Comput 37:413–418

    Article  Google Scholar 

  13. Kabel J, van Rietbergen B, Odgaard A, Huiskes R (1999) Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25:481–486

    Article  Google Scholar 

  14. van Lenthe GH, Huiskes R (2002) How morphology predicts mechanical properties of trabecular structures depends on intra-specimen trabecular thickness variations. J Biomech 35:1191–1197

    Article  Google Scholar 

  15. Lin JC, Amling M, Newitt DC, Selby K, Srivastav SK, Delling G, Genant HK, Majumdar S (1998) Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging. Osteoporos Int 8:16–24

    Article  Google Scholar 

  16. Lin JC, Grampp S, Link T, Kothari M, Newitt DC, Felsenberg D, et al (1999) Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 9:516–524

    Google Scholar 

  17. Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert RS (1999) Relationship between plain radiographic patterns and three-dimensional trabecular architecture in the human calcaneus. Osteoporos Int 9:339–345

    Article  Google Scholar 

  18. Majumdar S, Weinstein RS, Prasad RR (1993) Application of fractal geometry techniques to the study of trabecular bone. Med Phys 20:1611–1619

    Article  Google Scholar 

  19. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, et al (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454

    Article  Google Scholar 

  20. Majumdar S, Lin J, Link T, Millard J, Augat P, Ouyang X, et al (1999) Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 26:1330–1340

    Article  Google Scholar 

  21. Millard J, Augat P, Link TM, Kothari M, Newitt DC, Genant HK, Majumdar S (1998) Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif Tissue Int 63:482–489

    Article  Google Scholar 

  22. Misch CE, Qu Z, Bidez MW (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 57:700–706

    Article  Google Scholar 

  23. More JJ, Wright SJ (1993) Optimization software guide, Society for Industrial and Applied Mathematics, Philadelphia

  24. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Article  Google Scholar 

  25. Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E, et al (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 8:618–625

    Article  Google Scholar 

  26. Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P (2000) Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J Bone Miner Res 15:691–699

    Article  Google Scholar 

  27. van Ruijven LJ, Giesen EB, Farella M, van Eijden TM (2003) Prediction of mechanical properties of the cancellous bone of the mandibular condyle. J Dent Res 82:819–823

    Article  Google Scholar 

  28. Ruttimann UE, Webber RL, Hazelrig JB (1992) Fractal dimension from radiographs of peridontal alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surg Oral Med Oral Pathol 74:98–110

    Article  Google Scholar 

  29. Soutas-Little RW, Inman DJ (1999) Engineering mechanics: statics. Prentice-Hall, New Jersey, 454–458

    Google Scholar 

  30. Southard TE, Southard KA, Jakobsen JR, Hillis SL, Najim CA (1996) Fractal dimension in radiographic analysis of alveolar process bone. Oral Surg Oral. Med Oral Pathol Oral Radiol Endod 82:569–576

    Article  Google Scholar 

  31. Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1998) Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16:23–28

    Article  Google Scholar 

  32. White SC, Rudolph DJ (1999) Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88:628–635

    Article  Google Scholar 

  33. Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101:153–168

    Google Scholar 

  34. Wigderowitz CA, Abel EW, Rowley DI (1997) Evaluation of cancellous structure in the distal radius using spectral analysis. Clin Orthop Related Res 335:152–161

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant No.R01-2006-000-10011-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam-Sun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, WJ., Heo, MS., Lee, SS. et al. Comparison of trabecular bone anisotropies based on fractal dimensions and mean intercept length determined by principal axes of inertia. Med Bio Eng Comput 45, 357–364 (2007). https://doi.org/10.1007/s11517-006-0152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0152-z

Keywords

Navigation