Skip to main content
Log in

3D inverse dynamics in non-orthonormal segment coordinate system

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The net joint forces and moments may be computed by several 3D inverse dynamic methods. To do so, an orthonormal segment coordinate system (SCS) is generally mandatory. However, the segment axes ought to be selected following anatomical, functional, and inertial requirements that are hardly compatible with orthogonal axes. An alternative method based on generalized coordinates allows computing inverse dynamics using directly a set of basic points and unitary vectors. A segment definition is put forward in order to follow all of the anatomical, functional, and inertial requirements and the inverse dynamics is performed in a non orthonormal segment coordinate system (NSCS). The NSCS seems a convenient definition in biomechanics as far as anatomical, functional and inertial axes are concerned, but providing that the 3D joint forces and moments are still computable. The inverse dynamic method in NSCS is applied to the gait of a knee valgus subject and compared to a classical inverse dynamic method. The inverse dynamic method in NSCS shows comparable results but implies further clinical interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Allard P, Stokes IAF, Blanchi J (1995) Three-dimensional analysis of human movement. Human Kinetics, Champaign

    Google Scholar 

  2. Allard P, Lachance R, Aissaoui R, Duhaime M (1996) Simultaneous bilateral 3-D able-bodied gait. Hum Mov Sci 15:327–346

    Article  Google Scholar 

  3. Apkarian J, Naumann S, Cairns B (1989) A three-dimensional kinematic and dynamic model of the lower limb. J Biomech 22:143–155

    Article  Google Scholar 

  4. Besier TF, Sturnieks DL, Alderson JA, Lloyd DG (2003) Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech 36:1159–1168

    Article  Google Scholar 

  5. van den Bogert AJ, Smith GD, Nigg BM (1994) In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J Biomech 27:1477–1488

    Article  Google Scholar 

  6. Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech 10:171–178

    Article  Google Scholar 

  7. Chaffin DB, Anderson GBJ (1991) Occupational biomechanics. Wiley, New York

    Google Scholar 

  8. Chandler RF, Clauser CE, McConville JT, Reynolds HM, Young JW (1975) Investigation of inertial properties of the human body. Technical report AMRL-74–137. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton

    Google Scholar 

  9. Chèze L, Fregly BJ, Dimnet J (1995) A solidification procedure to facilitate kinematic analyses based on video system data. J Biomech 28:879–884

    Article  Google Scholar 

  10. Chèze L, Gutierrez C, San-Marcelino R, Dimnet J (1996) Biomechanics of the upper limb using robotic techniques. Hum Mov Sci 15:477–496

    Article  Google Scholar 

  11. Chèze L, Fregly BJ, Dimnet J (1998) Determination of joint functional axes from noisy marker data using the finite helical axis. Hum Mov Sci 17:1–15

    Article  Google Scholar 

  12. Clauser CE, McConville JT, Young JW (1969) Weight, volume, and center of mass of segments of the human body. Technical report AMRL-TR-69–70. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton

    Google Scholar 

  13. Davis RBI, Ounpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587

    Article  Google Scholar 

  14. Dempster WT (1955) Space requirements for the seated operator. WADC technical report TR-55–159. Wright Air Development Center, Wright-Patterson Air Force Base, Dayton

    Google Scholar 

  15. Doriot N, Chèze L (2004) A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach. IEEE Trans Biomed Eng 51:21–27

    Article  Google Scholar 

  16. Dumas R, Chèze L, Verriest JP (2006) Adjustments to McConville et al. and Young et al. body segment inertial parameters. J Biomech (in press)

  17. Dumas R, Nicol E, Chèze L (2006) Influence of perturbated gait data on four 3D inverse dynamic methods. In: Ninth symposium on 3D analysis of human movement, Valenciennes, France, 28–30 July: http://www.univvalenciennes.fr/congres/3D2006/Abstracts/152- Dumas.pdf

  18. Dumas R, Aissaoui R, de Guise JA (2004) A 3D generic inverse dynamic method using wrench notation and quaternion algebra. Comput Methods Biomech Biomed Eng 7:159–166

    Article  Google Scholar 

  19. Eng JJ, Winter DA (1995) Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? J Biomech 28:753–758

    Article  Google Scholar 

  20. Gamage SS, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35:87–93

    Article  Google Scholar 

  21. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  Google Scholar 

  22. Halvorsen K (2003) Bias compensated least squares estimate of the center of rotation. J Biomech 36:999–1008

    Article  Google Scholar 

  23. Hartenberg RS, Denavit I (1964) Kinematic synthesis of linkages. McGraw-Hill, New York

    Google Scholar 

  24. Holden JP, Stanhope SJ (1998) The effect of variation in knee center location estimates on net knee joint moments. Gait Posture 7:1–6

    Article  Google Scholar 

  25. Jalon JG, Bayo E (1994) Kinematic and dynamic simulation of mechanical systems—the real-time challenge. Springer, Heidelberg

    Google Scholar 

  26. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7:849–860

    Article  Google Scholar 

  27. Kirtley C (2001) Summary: quaternions vs. Euler angles. Biomch-L: http://www.isb.ri.ccf.org/biomch-l/archives/biomch-l-2001-05/00018.html

  28. de Leva P (1996) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech 29:1223–1230

    Article  Google Scholar 

  29. Moisio KC, Sumner DR, Shott S, Hurwitz DE (2003) Normalization of joint moments during gait: a comparison of two techniques. J Biomech 36:599–603

    Article  Google Scholar 

  30. Most E, Axe J, Rubash H, Li G (2004) Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech 37:1743–1748

    Article  Google Scholar 

  31. Pearsall DJ, Costigan PA (1999) The effect of segment parameter error on gait analysis results. Gait Posture 9:173–183

    Article  Google Scholar 

  32. Pearsall DJ, Reid JG (1994) The study of human body segment parameters in biomechanics. An historical review and current status report. Sports Med 18:126–140

    Google Scholar 

  33. Ramakrishnan HK, Kadaba MP, Wootten ME (1987) Lower extremity joint moments and ground reaction torque in adult gait. Biomechanics of normal and prosthetic gait BED. Am Soc Mach Eng 4:87–92

    Google Scholar 

  34. Rao G, Amarantini D, Berton E, Favier D (2005) Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J Biomech (in press)

  35. Reid JG, Jensen RK (1990) Human body segment inertia parameters: a survey and status report. Exerc Sport Sci Rev 18:225–241

    Article  Google Scholar 

  36. Reinbolt JA, Schutte JF, Fregly BJ, Koh BI, Haftka RT, George AD, Mitchell KH (2005) Determination of patient-specific multi-joint kinematic models through two-level optimization. J Biomech 38:621–626

    Article  Google Scholar 

  37. Schache AG, Baker R (2006) On the expression of joint moments during gait. Gait Posture (in press)

  38. Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38:107–116

    Google Scholar 

  39. Silva MP, Ambrosio JA (2002) Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst Dyn 8:219–239

    Article  MATH  Google Scholar 

  40. Silva MP, Ambrosio JA (2004) Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data. Gait Posture 19:35–49

    Article  Google Scholar 

  41. Spring KW (1986) Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mech Mach Theory 21:365–373

    Article  Google Scholar 

  42. Stagni R, Leardini A, Cappozzo A, Grazia Benedetti M, Cappello A (2000) Effects of hip joint centre mislocation on gait analysis results. J Biomech 33:1479–1487

    Article  Google Scholar 

  43. Vaughan CL, Davis BL, O’Connor JC (1992) Dynamics of human gait. Human Kinetics, Champaign

    Google Scholar 

  44. Woltring HJ, Huiskes R, de Lange A, Veldpaus FE (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18:379–389

    Article  Google Scholar 

  45. Wu G, Cavanagh PR (1995) ISB recommendations for standardization in the reporting of kinematic data. J Biomech 28:1257–1261

    Article  Google Scholar 

  46. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35:543–548

    Article  Google Scholar 

  47. Zatsiorsky VM, Seluyanov VN, Chugunova LG (1990) Methods of determining mass-inertial characteristics of human body segments. Contemporary Problems of Biomechanics: 272–291

Download references

Acknowledgments

The authors would like to thank Lionel Frossard, from University Claude Bernard Lyon1, for sharing his experience in rigid body dynamics using generalized coordinates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dumas.

Appendix

Appendix

The interpolation matrix allows computing the position of a point in the ICS, knowing its coordinates in the NSCS \({{\left({P_{i}, {\mathbf{u}}_{i}, {\left({{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)},{\mathbf{w}}_{i}} \right)}}\) and the generalized coordinates of the segment. For example, the position vector of the centre of mass \({\bf r}_{C_{i}}\) in the ICS can be expressed:

$$ {\mathbf{r}}_{{C_{i}}} - {\mathbf{r}}_{{P_{i}}} = {n_{i}^{C_i}}_{1} {\mathbf{u}}_{i} + {n_{i}^{C_i}}_{2} {\left({{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)} + {n_{i}^{C_i}}_{3} {\mathbf{w}}_{i}. $$
(15)

This expression (Eq. 15) is written in matrix form:

$$ {\mathbf{r}}_{C_i } = \underbrace{\left[ {\begin{array}{*{20}c} {{n_i^{C_i}}_1 {\mathbf{E}}_{3 \times 3} } & {\left({1 + {n_i^{C_i}}_2} \right){\mathbf{E}}_{3 \times 3} } & { - {n_i}^{C_{i}}_2 {\mathbf{E}}_{3 \times 3}} & {n_i}^{C_{i}}_3{\mathbf{E}}_{3 \times 3} \\ \end{array}} \right]}_{{\left[{{\mathbf{N}}_i^{C_{i}}}\right]}} \cdot{\left[{\begin{array}{*{20}c} {{\mathbf{u}}_i } \\ {{\mathbf{r}}_{P_i }} \\ {{\mathbf{r}}_{D_{i}}}\\{{\mathbf{w}}_i } \\ \end{array} } \right]}. $$
(16)

Four points, P i , D i , U i and W i , have remarkable coordinates in the NSCS (for i = 1, 2 and 3):

$$ {\mathbf{n}}^{{P_{i}}}_{i} = {\left[{\begin{array}{*{20}c} {0} \\ {0} \\ {0} \\ \end{array}} \right]},\quad {\mathbf{n}}^{{D_{i}}}_{i} = {\left[{\begin{array}{*{20}c} {0} \\ {{- 1}} \\ {0} \\ \end{array}} \right]},\quad {\mathbf{n}}^{{U_{i}}}_{i} = {\left[{\begin{array}{*{20}c} {1} \\ {0} \\ {0} \\ \end{array}} \right]}\, \hbox{and}\, {\mathbf{n}}^{{W_{i}}}_{i} = {\left[{\begin{array}{*{20}c} {0} \\ {0} \\ {1} \\ \end{array}} \right]}. $$

The corresponding remarkable interpolation matrices are:

$$ {\left[{{\mathbf{N}}^{{P_{i}}}_{i}} \right]}^{\rm T} = {\left[{\begin{array}{*{20}c} {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{E}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ \end{array}} \right]},\quad {\left[{{\mathbf{N}}^{{D_{i}}}_{i}} \right]}^{\rm T} = {\left[{\begin{array}{*{20}c} {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{E}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ \end{array}} \right]},\quad {\left[{{\mathbf{N}}^{{U_{i}}}_{i}} \right]}^{\rm T} = {\left[{\begin{array}{*{20}c} {{{\mathbf{E}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ \end{array}} \right]}\, \hbox{and}\, {\left[{{\mathbf{N}}^{{W_{i}}}_{i}} \right]}^{\rm T} = {\left[{\begin{array}{*{20}c} {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{0}}_{{3 \times 3}}}} \\ {{{\mathbf{E}}_{{3 \times 3}}}} \\ \end{array}} \right]}. $$

These interpolation matrices can be used to compute the generalized forces applied at these points. Concerning moments, the generalized moments cannot be computed with interpolation matrices [25]. Moments have first to be replaced by couple of opposite forces.

The moment M at proximal point P i can be replaced by three forces about the three axes \({{\left({{\mathbf{u}}_{i}, {\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}, {\mathbf{w}}_{i}} \right)}}\) and applied at the three points U i , W i and D i :

$$ {\mathbf{M}} = {\mathbf{w}}_{i} \times {\left({f_{1} {\mathbf{u}}_{i}} \right)} + {\mathbf{u}}_{i} \times {\left({f_{2} {\left({{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)}} \right)} + {\left({- {\left({{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)}} \right)} \times {\left({f_{3} {\mathbf{w}}_{i}} \right)}. $$
(17)

This expression (Eq. 17) is written in matrix form:

$$ {\mathbf{M}} = {\underbrace {{\left[{\begin{array}{*{20}c} {{{\mathbf{w}}_{i} \times {\mathbf{u}}_{i}}}& {{{\mathbf{u}}_{i} \times {\left({{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)}}}& {{- {\left({{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)} \times {\mathbf{w}}_{i}}} \\ \end{array}} \right]}}_{{{\left[{{\mathbf{B}}^{*}_{i}} \right]}}}}{\left[{\begin{array}{*{20}c} {{f_{1}}} \\ {{f_{2}}} \\ {{f_{3}}} \\ \end{array}} \right]}. $$
(18)

Three opposite forces are applied at endpoint P i in order to maintain equilibrium. Thus, six concentrated forces are required to represent the moment and the generalized moment is:

$$ \begin{aligned} {\left[{{\mathbf{N}}^{*}_{i}} \right]}^{\rm T} {\mathbf{M}} &= {\left[{{\mathbf{N}}^{{W_{i}}}_{i}} \right]}^{\rm T} {\left( {f_{1} {\mathbf{u}}_{i}} \right)} + {\left[{{\mathbf{N}}^{{U_{i}}}_{i}} \right]}^{\rm T} {\left({f_{2} {\left({{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)}} \right)} + {\left[{{\mathbf{N}}^{{D_{i}}}_{i}} \right]}^{\rm T} {\left({f_{3} {\mathbf{w}}_{i}} \right)} \\ &\quad + {\left[{{\mathbf{N}}^{{P_{i}}}_{i}} \right]}^{\rm T} {\left({- f_{1} {\mathbf{u}}_{i} - f_{2} {\left( {{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)} - f_{3} {\mathbf{w}}_{i}} \right)} \\ \end{aligned}.$$
(19)

Therefore, the pseudo-interpolation matrix is (Eq. 12):

$$ {\left[{{\mathbf{N}}^{*}_{i}} \right]}^{\rm T} = {\left[{\begin{array}{*{20}c} {{{\mathbf{0}}_{{3 \times 1}}}}& {{{\left( {{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)}}}& {{{\mathbf{0}}_{{3 \times 1}}}} \\ {{- {\mathbf{u}}_{i}}}& {{- {\left( {{\mathbf{r}}_{{P_{i}}} - {\mathbf{r}}_{{D_{i}}}} \right)}}}& {{- {\mathbf{w}}_{i}}} \\ {{{\mathbf{0}}_{{3 \times 1}}}}& {{{\mathbf{0}}_{{3 \times 1}}}}& {{{\mathbf{w}}_{i}}} \\ {{{\mathbf{u}}_{i}}}& {{{\mathbf{0}}_{{3 \times 1}}}}& {{{\mathbf{0}}_{{3 \times 1}}}} \\ \end{array}} \right]}{\left[{{\mathbf{B}}^{*}_{i}} \right]}^{{- 1}}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, R., Chèze, L. 3D inverse dynamics in non-orthonormal segment coordinate system. Med Bio Eng Comput 45, 315–322 (2007). https://doi.org/10.1007/s11517-006-0156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0156-8

Keywords

Navigation