Skip to main content

Advertisement

Log in

Robust propagation velocity estimation of gastric electrical activity by least mean p-norm blind channel identification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The propagation of the gastric slow wave is one of the most important spatial characteristics of gastric electrical activity (GEA). The time delay estimation (TDE) is an effective approach to quantitatively assessing the propagation velocity of GEA. Traditional TDE analyses are developed under the condition reported that the background noise in GEA analysis is Gaussian distributed. Due to the effects of spikes and/or motion artifacts, the GEA obtained from gastric serosal electrodes often contains sharp transitions. This paper proposes robust time delay estimation based on least mean p-norm blind channel identification (BCILMP) under α-stable noise condition. Compared with the least mean square time delay estimation (LMSTDE), the BCILMP provides better performance in the impulsive noise environments. The robustness of the proposed method is demonstrated through computer simulations in both Gaussian and α-stable noise environments. The results of the propagation velocity of real data obtained from gastric serosal electrodes in gastroparetic patients show that the propagation velocity in gastroparetic patients is slower than in the normal subjects reported in the literature, and the slow-wave propagation is directed proximally to distally from the corpus toward the pylorus but not all the variability of the propagation velocity increases monotonously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen J, Vandewalle J, Sansen W et al (1989) Observation of the propagation direction of human electrogastric activity from curaneous recordings. Med Biol Eng Comput 27:538–542

    Article  Google Scholar 

  2. Chen J, Yi X, Schirmer B et al (1994) Impaired propagation of gastric slow waves in gastroparesis and the postoperative period (abstract). Gastroenterology 106:A477

    Google Scholar 

  3. Chen J, Zou X, Lin X et al (1999) Detection of gastric slow wave propagation from the cutaneous electrogastrogram. Am J Physiol 277:G424–G430

    Google Scholar 

  4. Famioni B, Kingma Y, Bowes K (1987) Study of transcutaneous and intraluminal measurement of gastric electrical activity in humans. Med Biol Eng Comput 25:397–402

    Article  Google Scholar 

  5. Forster J, Damjanov I, Lin Z, Sarosiek I, Wetzel P, McCallum RW (2005) Absence of interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg 9(1):102–108

    Article  Google Scholar 

  6. Hinder RA, Kelly KA (1978) Human gastric pacemaker potential: Site of origin, spread and response to gastric transaction and proximal vagotomy. Am J Surg 133:29–33

    Article  Google Scholar 

  7. Huang Y, Benesty J, Elko GW (1999) Adaptive eigenvalue decomposition algorithm for passive acoustic source localization system. IEEE ICASSP’99 937–940

  8. Kong X, Qiu TS (1999) Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time-delay estimation. IEEE Trans Biomed Eng 46(8):994–1003

    Article  Google Scholar 

  9. Liang J, Chen J (1997) What can be measured from surface electrogastrography. Dig Dis Sci 42(7):1331–1343

    Article  Google Scholar 

  10. Lin Z, McCallum R, Schirmer B et al (1998) Effects of pacing parameters on entrainment of gastric slow wave in patients with gastroparesis. Am J Physiol 274:G186–G191

    Google Scholar 

  11. Lin Z, Forster J, Sarosiek I, McCallum RW (2003) Treatment of gastroparesis with electrical stimulation. Dig Dis Sci 48(5):837–848

    Article  Google Scholar 

  12. Lin Z, Forster J, Sarosiek I, McCallum RW (2004) Effect of high frequency gastric electrical stimulation on gastric myoelectric activity in gastroparetic patients. Neurogastroenterol Motil 16:205–212

    Article  Google Scholar 

  13. Liu WH, Qiu TS, Lin ZY, McCallum RW (2005) Estimation of propagation velocity of gastric electrical activity using LMSTDE. IEEE EMBS’05 5954–5957

  14. Ma X, Nikias CL (1996) Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans Sign Proc 44(11):2669–2687

    Article  Google Scholar 

  15. McCallum R, CHEN J, Lin Z et al (1998) Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology 114:456–461

    Article  Google Scholar 

  16. Miedema M, Sarr M, Kelly K (1992) Pacing the human stomach. Surgery 111:143–150

    Google Scholar 

  17. Nikias CL, Shao M (1995) Signal processing with alpha-stable distributions. Wiley, New York

    Google Scholar 

  18. Wang HY, Qiu TS (1999) Adaptive noise cancellation and time delay estimation. Dalian University of Technology Press, Dalian

    Google Scholar 

  19. Wang Z, He Z, Chen J (2005) Robust time delay estimation of bioelectric signals using least absolute deviation neural network. IEEE Trans Biomed Eng 52(3):454–462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyue Lin.

Appendix

Appendix

The derivation process of Eq. (7) is below:

The cost function is J(n) =  E[|e(n)|p], 1 ≤ p <  α, where \({e(n) = \frac{{{\bf w}^{\rm T} (n){\bf x}(n)}}{{{\left\| {{\bf w}(n)} \right\|}_{p}}}.}\) The steepest descent algorithm has been derived to minimize the p-norm cost function, has following update equation:

$$ {\mathbf{w}}(n + 1) = {\mathbf{w}}(n) + \mu [ - \nabla_{{\mathbf{w}}} J(n)] = {\mathbf{w}}(n) - \mu [e(n)]^{{\langle p - 1\rangle}} \nabla_{{\mathbf{w}}} e(n) $$
(11)

There is w(n +  1) ≈ w(n) and gradient vector ∇ w e(n) =  0 after convergence gives. Further, has following equation:

$$ \frac{{{\mathbf{x}}(n){\left\| {{\mathbf{w}}(n)} \right\|}_{p} - {\mathbf{w}}(n)^{\rm T} {\mathbf{x}}(n)({\left\| {{\mathbf{w}}(n)} \right\|}_{p} {)}^{\prime}}}{{{\left\| {{\mathbf{w}}(n)} \right\|}^{2}_{p}}} = {\mathbf{0}} $$
(12)

where

$$ \begin{aligned} ({\left\| {{\mathbf{w}}(n)} \right\|}_{p} {)}^{\prime} &= {\left\{{{\left[ {{\sum\limits_{i = 0}^{M - 1} {{\left[ {{\left| {w_{2} (n - i)} \right|}^{p} + {\left| {- w_{1} (n - i)} \right|}^{p}} \right]}}}} \right]}^{{1/p}}} \right\}}^{\prime} \\&= \left[ {\frac{1}{p}{\left\| {{\mathbf{w}}(n)} \right\|}^{{1 - p}}_{p} p{\left| {w_{2} (n)} \right|}^{{p - 1}} \operatorname{sgn} [w_{2} (n)]}, \right. \ldots, \frac{1}{p}{\left\| {{\mathbf{w}}(n)} \right\|}^{{1 - p}}_{p} p{\left| {w_{2} (n - M + 1)} \right|}^{{p - 1}} \operatorname{sgn} [w_{2} (n - M + 1)], \\ & \quad \frac{1}{p}{\left\| {{\mathbf{w}}(n)} \right\|}^{{1 - p}}_{p} p{\left| {- w_{1} (n)} \right|}^{{p - 1}} \operatorname{sgn} [ - w_{1} (n)], \ldots, \left. {\frac{1}{p}{\left\| {{\mathbf{w}}(n)} \right\|}^{{1 - p}}_{p} p{\left| {- w_{1} (n - M + 1)} \right|}^{{p - 1}} \operatorname{sgn} [ - w_{1} (n - M + 1)]} \right]^{\rm T} \\ & = {\left\| {{\mathbf{w}}(n)} \right\|}^{{1 - p}}_{p} {\left[ {{\left| {w_{2} (n)} \right|}^{{\langle p - 1\rangle}}, \ldots, {\left| {w_{2} (n - M + 1)} \right|}^{{\langle p - 1\rangle}}, {\left| {- w_{1} (n)} \right|}^{{\langle p - 1\rangle}}, \ldots, {\left| {- w_{1} (n - M + 1)} \right|}^{{\langle p - 1\rangle}}} \right]}^{\rm T} \\ & = \frac{{{\mathbf{w}}^{{\langle p - 1\rangle}}}}{{{\left\| {\mathbf{w}} \right\|}^{{p - 1}}_{p}}} \\ \end{aligned} $$

then Eq. (12)can be simplified as follow:

$$ \frac{1}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p}}}{\left[ {{\mathbf{x}}(n) - e(n)\frac{{{\mathbf{w}}(n)^{{\langle p - 1\rangle}}}}{{{\left\| {{\mathbf{w}}(n)} \right\|}^{{p - 1}}_{p}}}} \right]} = {\mathbf{0}} $$
(13)

thus, \({{\mathbf{x}}(n)=e(n)\frac{{[{\mathbf{w}}(n)]^{{\langle p - 1\rangle}}}}{{{\left\| {{\mathbf{w}}(n)} \right\|}^{{p - 1}}_{p}}}}\) can be obtained. Right multiplying \({[{\mathbf{x}}^{\rm T} (n)]^{{\langle p - 1\rangle}} \frac{{{\mathbf{w}}(n)}}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p}}}}\) both side of this equation and taking expectation:

$$ \begin{aligned} E{\left\{{{\mathbf{x}}(n)[{\mathbf{x}}^{\rm T} (n)]^{{\langle p - 1\rangle}} \frac{{{\mathbf{w}}(n)}}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p}}}} \right\}} &= E{\left\{{e(n)\frac{{{\mathbf{w}}(n)^{{\langle p - 1\rangle}} [{\mathbf{x}}^{\rm T} (n)]^{{\langle p - 1\rangle}} {\mathbf{w}}(n)}}{{{\left\| {{\mathbf{w}}(n)} \right\|}^{p}_{p}}}} \right\}} \\ R_{{_{c}}} (n)\frac{{{\mathbf{w}}(n)}}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p}}} &= E{\left\{{e(n)\frac{{{\mathbf{w}}(n)[{\mathbf{x}}^{\rm T} (n){\mathbf{w}}(n)]^{{\langle p - 1\rangle}}}}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p} {\left\| {{\mathbf{w}}(n)} \right\|}^{{p - 1}}_{p}}}} \right\}} = E[{\left| {e(n)} \right|}^{p} ]\frac{{{\mathbf{w}}(n)}}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p}}} \\ \end{aligned} $$
(14)

where \({{\mathbf{R}}_{c} (n) = E\{[{\mathbf{x}}(n)]^{{\langle p - 1\rangle}} {\mathbf{x}}^{\rm T} (n)\}= E\{{\mathbf{x}}(n)[{\mathbf{x}}^{{{\rm T}}} (n)]^{{\langle p - 1\rangle}} \}.}\) We have \({{\mathbf{R}}_{c}(n)\frac{{{\mathbf{w}}(n)}}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p}}} = E[{\left| {e(n)} \right|}^{p} ]\frac{{{\mathbf{w}}(n)}}{{{\left\| {{\mathbf{w}}(n)} \right\|}_{p}}}.}\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Qiu, T., McCallum, R.W. et al. Robust propagation velocity estimation of gastric electrical activity by least mean p-norm blind channel identification. Med Bio Eng Comput 45, 437–445 (2007). https://doi.org/10.1007/s11517-007-0172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0172-3

Keywords

Navigation