Skip to main content

Advertisement

Log in

A mathematical tool to generate complex whole body motor tasks and test hypotheses on underlying motor planning

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In spite of the complexity of human motor behavior, difficulties in mathematical modeling have restricted to rather simple movements attempts to identify the motor planning criterion used by the central nervous system. This paper presents a novel-simulation technique able to predict the "desired trajectory" corresponding to a wide range of kinematic and kinetic optimality criteria for tasks involving many degrees of freedom and the coordination between goal achievement and balance maintenance. Employment of proper time discretization, inverse dynamic methods and constrained optimization technique are combined. The application of this simulator to a planar whole body pointing movement shows its effectiveness in managing system nonlinearities and instability as well as in ensuring the anatomo-physiological feasibility of predicted motor plans. In addition, the simulator’s capability to simultaneously optimize competing movement aspects represents an interesting opportunity for the motor control community, in which the coexistence of several controlled variables has been hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Admiraal MA, Kusters MJMAM, Gielen SCAM (2004) Modeling kinematics and dynamics of human arm movements. Motor Control 8(3):312–338

    Google Scholar 

  2. Alexandrov A, Frolov A, Massion J (2001) Biomechanical analysis of movement strategies in human forward trunk bending. I. Modeling. Biol Cybern 84:425–434

    Article  Google Scholar 

  3. Anderson FC, Pandy MG (1999) A dynamic optimization solution for vertical jumping in three dimensions. Comput Methods Biomech Biomed Eng 2(3):201–231

    Article  Google Scholar 

  4. Anderson FC, Pandy MG (2001a) Dynamic optimization of human walking. J Biomech Eng 123(5):381–390

    Article  Google Scholar 

  5. Anderson FC, Pandy MG (2001b) Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 34(2):153–161

    Article  Google Scholar 

  6. Anderson F, Ziegler J, Pandy M, Whalen R (1995) Application of high-performance computing to numerical simulation of human movement. J Biomech Eng 117:155–157

    Google Scholar 

  7. Atkeson C, Hollerbach J (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9):2318–30

    Google Scholar 

  8. Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862):446–449

    Article  Google Scholar 

  9. Coleman TF, Zhang Y (2003) Optimization toolbox user’s guide. The MathWorks, Inc., Natick

    Google Scholar 

  10. Commissaris D, Toussaint H, Hirschfeld H (2001) Anticipatory postural adjustments in a bimanual, whole-body lifting task seem not only aimed at minimising anterior–posterior centre of mass displacements. Gait Posture 14(1):44–55

    Article  Google Scholar 

  11. Crowninshield DR, Brand RA (1981) A physiologically based criterion of muscle forze prediction in locomotion. J Biomech 14:793–801

    Article  Google Scholar 

  12. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed matematical model. J Neurosci 5:103–168

    Google Scholar 

  13. Ghafouri M, Archambault PS, Adamovich SV, Feldman AG (2002) Pointing movements may be produced in different frames of reference depending on the task demand. Brain Res 929(1):117–128

    Article  Google Scholar 

  14. Gottlieb G, Song Q, Hong D, Almeida G, Corcos D (1996) Coordinating movement at two joints: a principle of linear covariance. J Neurophysiol 75(4):1760–4

    Google Scholar 

  15. Gribble P, Ostry D (1996) Origin of the power-law reaction between movement velocity and curvature—modeling the effects of muscle mechanics and limb dynamics. J Neurophysiol 76:2853–2860

    Google Scholar 

  16. Happee R (1994) Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements. J Biomech 27(7):953–960

    Article  Google Scholar 

  17. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394(6695):780–784

    Article  Google Scholar 

  18. Hoy M, Zajac F, Gordon M (1990) A musculoskeletal model of the human lower extremity: the effect of muscle, tendon and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee and ankle. J Biomech 23(2):157–169

    Article  Google Scholar 

  19. Kaminski TR, Simpkins S (2001) The effects of stance configuration and target distance on reaching. I. Movement preparation. Exp Brain Res 136(4):439–446

    Article  Google Scholar 

  20. Kaufman KR, An KN, Litchy WJ, Chao EY (1991) Physiological prediction of muscle forces—II. Application to isokinetic exercise. Neuroscience 40(3):793–804

    Article  Google Scholar 

  21. Kerlirzin Y, Pozzo T, Dietrich G, Vieilledent S (1999) Effects of kinematics constraints on hand trajectory during whole-body lifting tasks. Neurosci Lett 277(1):41–44

    Article  Google Scholar 

  22. Koopman B, Grootenboer HJ, de Jongh HJ (1995) An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J Biomech 28:1369–1376

    Article  Google Scholar 

  23. Kuo A (1998) A least-squares estimation approach to improving the precision of inverse dynamics computations. J Biomech Eng 120(1):148–59

    Google Scholar 

  24. Lashley K (1951) Cerebral mechanisms in behaviour, Jeffress (ed) Wiley, New York, chap The problem of serial order in behaviour

  25. Lo J, Huang G, Metaxas D (2002) Human motion planning based on recursive dynamics and optimal control techniques. Multibody System Dynamics 8:433–458

    Article  MATH  MathSciNet  Google Scholar 

  26. Marshall R, Mazur S, Taylor N (1990) Three-dimensional surfaces for human muscle kinetics. Eur J Appl Physiol 61:263–270

    Article  Google Scholar 

  27. Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Progress Neurobiol 83:35–56

    Article  Google Scholar 

  28. Massion J, Popov K, Fabre JC, Rage P, Gurfinkel V (1997) Is the erect posture in microgravity based on the control of trunk orientation or center of mass position? Exp Brain Res 114(2):384–389

    Article  Google Scholar 

  29. Morasso P (1981) Spatial control of arm movement. Exp Brain Res 42:223–227

    Article  Google Scholar 

  30. Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5):2140–2155

    Google Scholar 

  31. Otis J, Warren R, Backus S, Santner T, Mabrey J (1990) Torque production in the shoulder of the normal young adult male. The interaction of function, dominance, joint angle, and angular velocity. Am J Sports Med 18(2):119–123

    Article  Google Scholar 

  32. Pandy M (2001) Computer modeling and simulation of human movement. Annu Rev Biomed Eng 3:245–73

    Article  Google Scholar 

  33. Pandy M, Sim FZE, Levine W (1990) An optimal control model for maximum-height human jumping. J Biomech 23(12):1185–98

    Article  Google Scholar 

  34. Papaxanthis C, Pozzo T, Stapley P (1998) Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man. Neurosci Lett 253(2):103–106

    Article  Google Scholar 

  35. Pedotti A, Krishnan V, Stark L (1978) Optimization of muscle-force sequencing in human locomotion. Math Biosci 38:57–76

    Article  Google Scholar 

  36. Pozzo T, McIntyre J, Cheron G, Papaxanthis C (1998) Hand trajectory formation during whole body reaching movements in man. Neurosci Lett 240(3):159–162

    Article  Google Scholar 

  37. Pozzo T, Stapley PJ, Papaxanthis C (2002) Coordination between equilibrium and hand trajectories during whole body pointing movements. Exp Brain Res 144(3):343–350

    Article  Google Scholar 

  38. Ramos C, Stark L (1990) Postural maintenance during fast forward bending: a model for simulation experiment determines the ‘reduced trajectory’. Exp Brain Res 82:651–657

    Article  Google Scholar 

  39. Riener R, Fuhr T (1998) Patient-driven control of fes-supported standing up: a simulation study. IEEE Trans Rehabil Eng 6(2):113–124

    Article  Google Scholar 

  40. Riener R, Edrich T (1999) Identification of passive elastic joint moments in the lower extremities. J Biomech 32(5):539–544

    Article  Google Scholar 

  41. Soechting JF, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1(7):710–720

    Google Scholar 

  42. Soechting JF, Buneo CA, Herrmann U, Flanders M (1995) Moving effortlessly in three dimensions: does donders’ law apply to arm movement? J Neurosci 15(9):6271–6280

    Google Scholar 

  43. Stapley P, Pozzo T, Grishin A (1998) The role of anticipatory postural adjustments during whole body forward reaching movements. Neuroreport 9(3):395–401

    Article  Google Scholar 

  44. Stapley P, Pozzo T, Grishin A, Papaxanthis C (2000) Investigating centre of mass stabilisation as the goal of posture and movement coordination during human whole body reaching. Biol Cybern 82(2):161–172

    Article  Google Scholar 

  45. Thomas JS, Corcos DM, Hasan Z (2003) Effect of movement speed on limb segment motions for reaching from a standing position. Exp Brain Res 148(3):377–387

    Google Scholar 

  46. Thomas JS, Corcos DM, Hasan Z (2005) Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements. J Neurophysiol 93(1):352–364

    Article  Google Scholar 

  47. Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915

    Article  Google Scholar 

  48. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235

    Article  Google Scholar 

  49. Toussaint H, Michies Y, Faber M, Commissaris D, van Dieën J (1998) Scaling anticipatory postural adjustments dependent on confidence of load estimation in a bi-manual whole-body lifting task. Exp Brain Res 120(1):85–94

    Article  Google Scholar 

  50. Tsirakos D, Baltzopoulos V, Bartlett R (1997) Inverse optimization: functional and physiological considerations related to the force-sharing problem. Crit Rev Biomed Eng 25(4-5):371–407

    Google Scholar 

  51. Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern 61(2):89–101

    Article  Google Scholar 

  52. Unser M, Aldroubi A, Eden M (1993) B-spline signal processing: part I—theory. IEEE Trans Signal Process 41(2):821–833

    Article  MATH  Google Scholar 

  53. Zatsiorsky V, Seluyanov V (1983) The mass and inertia characteristics of the main segments of the human body. Biomechanics VIII-B. In: Matsui H, Kobayashi K (eds) Kinetics of human motion. Human Kinetic Publishers, Champaign, pp 1151–1159

    Google Scholar 

  54. Zhang LQ, Rymer WZ (1997) Simultaneous and nonlinear identification of mechanical and reflex properties of human elbow joint muscles. IEEE Trans Biomed Eng 44(12):1192–1209

    Article  Google Scholar 

  55. Zhang LQ, Nuber G, Butler J, Bowen M, Rymer WZ (1998) In vivo human knee joint dynamic properties as functions of muscle contraction and joint position. J Biomech 31(1):71–76

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge J. McIntyre for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Tagliabue.

Additional information

Supported by Italian Space Agency DCMC contract and by Italian Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagliabue, M., Pedrocchi, A., Pozzo, T. et al. A mathematical tool to generate complex whole body motor tasks and test hypotheses on underlying motor planning. Med Bio Eng Comput 46, 11–22 (2008). https://doi.org/10.1007/s11517-007-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0252-4

Keywords

Navigation