Skip to main content
Log in

Validity of accelerometry in assessing the duration of the sit-to-stand movement

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Accelerometry is frequently used in movement analysis to assess body postures and motions. Here, we assessed the validity of ambulatory accelerometric measurement of the sit-to-stand (STS) movement duration. We compared accelerometric and opto-electronic assessment of the STS movement duration under four conditions (comfortable, slow, fast movement and exaggerated trunk flexion) with six healthy subjects and six subjects with stroke who performed movements six times under each condition. Accelerometric and opto-electronic data of STS movement duration were strongly related (= 0.98). Accelerometry showed a fixed bias of 0.07 s (95% CI 0.008, 0.141) in healthy subjects and 0.32 s (95% CI 0.223, 0.422) in stroke subjects. In healthy subjects, a significant negative proportional bias of 0.1 was detected (95% CI −0.160, −0.032). Accelerometry showed discriminative validity in comparing stroke subjects to healthy subjects, and in comparing speed conditions. Our results indicate that accelerometry can provide valid data on the STS movement duration, furthermore during its use additional information on the STS movement, such as balance control, can be recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander NB, Gross MM, Medell JL et al (2001) Effects of functional ability and training on chair-rise biomechanics in older adults. J Gerontol A Biol Sci Med Sci 56(9):M538–M547

    Google Scholar 

  2. Alexander NB, Schultz AB, Warwick DN (1991) Rising from a chair: effects of age and functional ability on performance biomechanics. J Gerontol 46(3):M91–M98

    Google Scholar 

  3. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Google Scholar 

  4. Bohannon RW (1995) Sit-to-stand test for measuring performance of lower extremity muscles. Percept Mot Skills 80(1):163–166

    Google Scholar 

  5. Bohannon RW (2006) Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Percept Mot Skills 103(1):215–222. doi:10.2466/PMS.103.5.215-222

    Article  Google Scholar 

  6. Bohannon RW, Shove ME, Barreca SR et al (2007) Five-repetition sit-to-stand test performance by community-dwelling adults: a preliminary investigation of times, determinants, and relationship with self-reported physical performance. Isokinet Exerc Sci 15(2):77–81

    Google Scholar 

  7. Boonstra MC, van der Slikke RM, Keijsers NL et al (2006) The accuracy of measuring the kinematics of rising from a chair with accelerometers and gyroscopes. J Biomech 39(2):354–358. doi:10.1016/j.jbiomech.2004.11.021

    Article  Google Scholar 

  8. Bussmann JB, Stam HJ (1998) Techniques for measurement and assessment of mobility in rehabilitation: a theoretical approach. Clin Rehabil 12(6):455–464. doi:10.1191/026921598674267844

    Article  Google Scholar 

  9. Bussmann JB, Tulen JH, van Herel EC et al (1998) Quantification of physical activities by means of ambulatory accelerometry: a validation study. Psychophysiology 35(5):488–496. doi:10.1017/S0048577298971153

    Article  Google Scholar 

  10. Bussmann JB, van de Laar YM, Neeleman MP et al (1998) Ambulatory accelerometry to quantify motor behaviour in patients after failed back surgery: a validation study. Pain 74(2–3):153–161. doi:10.1016/S0304-3959(97)00161-9

    Article  Google Scholar 

  11. Cheng PT, Liaw MY, Wong MK et al (1998) The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil 79(9):1043–1046. doi:10.1016/S0003-9993(98)90168-X

    Article  Google Scholar 

  12. Cheng PT, Wu SH, Liaw MY et al (2001) Symmetrical body-weight distribution training in stroke patients and its effect on fall prevention. Arch Phys Med Rehabil 82(12):1650–1654. doi:10.1053/apmr.2001.26256

    Article  Google Scholar 

  13. Chou SW, Wong AM, Leong CP et al (2003) Postural control during sit-to stand and gait in stroke patients. Am J Phys Med Rehabil 82(1):42–47. doi:10.1097/00002060-200301000-00007

    Article  Google Scholar 

  14. Geiger RA, Allen JB, O’Keefe J et al (2001) Balance and mobility following stroke: effects of physical therapy interventions with and without biofeedback/forceplate training. Phys Ther 81(4):995–1005

    Google Scholar 

  15. Giansanti D (2006) Does centripetal acceleration affect trunk flexion monitoring by means of accelerometers? Physiol Meas 27(10):999–1008. doi:10.1088/0967-3334/27/10/006

    Article  Google Scholar 

  16. Giansanti D, Maccioni G (2006) Physiological motion monitoring: a wearable device and adaptative algorithm for sit-to-stand timing detection. Physiol Meas 27(8):713–723. doi:10.1088/0967-3334/27/8/006

    Article  Google Scholar 

  17. Giansanti D, Maccioni G, Benvenuti F et al (2007) Inertial measurement units furnish accurate trunk trajectory reconstruction of the sit-to-stand manoeuvre in healthy subjects. Med Biol Eng Comput 45(10):969–976. doi:10.1007/s11517-007-0224-8

    Article  Google Scholar 

  18. Hanke TA, Pai YC, Rogers MW (1995) Reliability of measurements of body center-of-mass momentum during sit- to-stand in healthy adults. Phys Ther 75(2):105–113. Discussion 113–118

    Google Scholar 

  19. Hennington G, Johnson J, Penrose J et al (2004) Effect of bench height on sit-to-stand in children without disabilities and children with cerebral palsy. Arch Phys Med Rehabil 85(1):70–76. doi:10.1016/S0003-9993(03)00407-6

    Article  Google Scholar 

  20. Hesse S, Schauer M, Petersen M et al (1998) Sit-to-stand manoeuvre in hemiparetic patients before and after a 4- week rehabilitation programme. Scand J Rehabil Med 30(2):81–86. doi:10.1080/003655098444174

    Article  Google Scholar 

  21. Janssen WG, Bussmann JB, Horemans HL et al (2005) Analysis and decomposition of accelerometric signals of trunk and thigh obtained during the sit-to-stand movement. Med Biol Eng Comput 43(2):265–272. doi:10.1007/BF02345965

    Article  Google Scholar 

  22. Janssen WGM, Geler D, Bussmann JBJ et al. (2006) Sensitivity of accelerometry to assess trunk lateral sway during the sit-to-stand movement in patients with stroke. Gait Posture 24(Suppl. 2):S211–S213. doi:10.1016/j.gaitpost.2006.11.146

    Google Scholar 

  23. Jones CJ, Rikli RE, Beam WC (1999) A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport 70(2):113–119

    Google Scholar 

  24. Kiani K, Snijders CJ, Gelsema ES (1997) Computerized analysis of daily life motor activity for ambulatory monitoring. Technol Health Care 5(4):307–318

    Google Scholar 

  25. Kotake T, Dohi N, Kajiwara T et al (1993) An analysis of sit-to-stand movements. Arch Phys Med Rehabil 74(10):1095–1099. doi:10.1016/0003-9993(93)90068-L

    Article  Google Scholar 

  26. Kralj A, Jaeger RJ, Munih M (1990) Analysis of standing up and sitting down in humans: definitions and normative data presentation. J Biomech 23(11):1123–1138. doi:10.1016/0021-9290(90)90005-N

    Article  Google Scholar 

  27. Lomaglio MJ, Eng JJ (2005) Muscle strength and weight-bearing symmetry relate to sit-to-stand performance in individuals with stroke. Gait Posture 22(2):126–131. doi:10.1016/j.gaitpost.2004.08.002

    Article  Google Scholar 

  28. Ludbrook J (2002) Statistical techniques for comparing measurers and methods of measurement: a critical review. Clin Exp Pharmacol Physiol 29(7):527–536. doi:10.1046/j.1440-1681.2002.03686.x

    Article  Google Scholar 

  29. Maeda A, Yuasa T, Nakamura K et al (2000) Physical performance tests after stroke: reliability and validity. Am J Phys Med Rehabil 79(6):519–525. doi:10.1097/00002060-200011000-00008

    Article  Google Scholar 

  30. Manckoundia P, Mourey F, Pfitzenmeyer P et al (2006) Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer’s disease elderly subjects. Neuroscience 137(2):385–392. doi:10.1016/j.neuroscience.2005.08.079

    Article  Google Scholar 

  31. Mayagoitia RE, Nene AV, Veltink PH (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35(4):537–542. doi:10.1016/S0021-9290(01)00231-7

    Article  Google Scholar 

  32. McCarthy EK, Horvat MA, Holtsberg PA et al (2004) Repeated chair stands as a measure of lower limb strength in sexagenarian women. J Gerontol A Biol Sci Med Sci 59(11):1207–1212

    Google Scholar 

  33. Mokler PJ, Sandstrom R, Griffin M et al (2000) Predicting discharge destination for patients with severe motor stroke: important functional tasks. Neurorehabil Neural Repair 14(3):181–185

    Google Scholar 

  34. Mourey F, Pozzo T, Rouhier-Marcer I et al (1998) A kinematic comparison between elderly and young subjects standing up from and sitting down in a chair. Age Ageing 27(2):137–146. doi:10.1093/ageing/27.2.137

    Article  Google Scholar 

  35. Mulder T, Nienhuis B, Pauwels J (1998) Clinical gait analysis in a rehabilitation context: some controversial issues. Clin Rehabil 12(2):99–106. doi:10.1191/026921598671477899

    Article  Google Scholar 

  36. Pai YC, Rogers MW (1990) Control of body mass transfer as a function of speed of ascent in sit-to-stand. Med Sci Sports Exerc 22(3):378–384. doi:10.1249/00005768-199006000-00015

    Google Scholar 

  37. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148

    Google Scholar 

  38. Schenkman M, Berger RA, Riley PO et al. (1990) Whole-body movements during rising to standing from sitting. Phys Ther 70(10):638–648. Discussion 648–651

    Google Scholar 

  39. van den Berg-Emons HJ, Bussmann JB, Balk AH et al (2000) Validity of ambulatory accelerometry to quantify physical activity in heart failure. Scand J Rehabil Med 32(4):187–192. doi:10.1080/003655000750060940

    Article  Google Scholar 

  40. van den Berg-Emons HJ, Bussmann JB, Brobbel AS et al (2001) Everyday physical activity in adolescents and young adults with meningomyelocele as measured with a novel activity monitor. J Pediatr 139(6):880–886. doi:10.1067/mpd.2001.119991

    Article  Google Scholar 

  41. Vander Linden DW, Brunt D, McCulloch MU (1994) Variant and invariant characteristics of the sit-to-stand task in healthy elderly adults. Arch Phys Med Rehabil 75(6):653–660. doi:10.1016/0003-9993(94)90188-0

    Article  Google Scholar 

  42. Warton DI, Wright IJ, Falster DS et al (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81(2):259–291. doi:10.1017/S1464793106007007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim G. M. Janssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, W.G.M., Bussmann, J.B.J., Horemans, H.L.D. et al. Validity of accelerometry in assessing the duration of the sit-to-stand movement. Med Biol Eng Comput 46, 879–887 (2008). https://doi.org/10.1007/s11517-008-0366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0366-3

Keywords

Navigation