Skip to main content
Log in

The effect of ground electrode on the sensitivity, symmetricity and technical feasibility of scalp EEG recordings

  • Short Communication
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Although the choice of the measurement reference strongly affects the measurement sensitivity, validity and comparability, selection is often based on tradition, convenience and comparability to earlier results [Dien in Behav Res Methods Ins C 30(1):34–43, 1998; Femi and Sundor in Int J Psychosom 36(1-4):23–33; 1989]. Artificial means can be applied to compensate for the referential issues, but they cannot restore any lost data. The validity of the recorded data is ultimately defined by the hardware setup. In this simulation study, common average ground reference (AR) is characterized and compared to two alternative common ground reference schemes in respect to their influence on the sensitivity distribution and technical feasibility of scalp EEG recording. It was found that, despite the polar average reference effect [Junghöfer et al. in Clin Neurophysiol 110(6):1149–1155; 1999], AR merits a significantly higher symmetricity and should be promoted generally not only in high-electrode-density studies, but also in low-channel-count studies if the stringent design requirements can be met. In low-electrode-density studies, balancing the setup may prove challenging, but successful implementation can provide nearly undistorted data. Isolation of the system is a critical parameter, but technological advances enable the requirements to be fulfilled. A physical ground should be applied if high isolation is not applicable or if it is defined by the application. The results will apply for the applied homogenous concentric 3-sphere model, but should be further studied in a realistic context if more detailed and case-sensitive information is required; the underlying phenomena are generally applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chimeno MF, Pallàs-Areny R (2000) A comprehensive model for power line interference in biopotential measurements. IEEE T Instrum Meas 49(3):535–540

    Article  Google Scholar 

  2. Desmedt JE, Chalklin V, Tomberg C (1990) Emulation of somatosensory evoked potential (SEP) components with the 3-shell head model and the problem of “ghost fields” when using an average reference in brain mapping. Electroencephalogr Clin Neurophysiol 77:243–258. doi:10.1016/0168-5597(90)90063-J

    Article  Google Scholar 

  3. Dien J (1998) Issues in the application of the average reference: review, critique and recommendations. Behav Res Methods Ins C 30(1):34–43

    Google Scholar 

  4. Essl M, Rappelsberger F (1998) EEG coherence and reference signals: experimental results and mathematical explanations. Med Biol Eng Comput 36(4):399–406. doi:10.1007/BF02523206

    Article  Google Scholar 

  5. Fehmi LG, Sundor A (1989) The effects of electrode placement upon EEG biofeedback training: the monopolar–bipolar controversy. Int J Psychosom 36(1-4):23–33

    Google Scholar 

  6. Goldman D (1950) The clinical use of the “average” reference electrode in monopolar recording. Electroencephalogr Clin Neurophysiol 2(2):209–212. doi:10.1016/0013-4694(50)90039-3

    Google Scholar 

  7. Hagemann D, Naumann E, Thayer JF (2001) The quest for the EEG reference revisited: a glance from brain symmetry research. Psychophysiology 38:847–857. doi:10.1017/S0048577201001081

    Article  Google Scholar 

  8. Joyce C, Rossion B (2005) The face-sensitive N170 and VPP components manifest the same brain processes: the effect of reference electrode site. Clin Neurophysiol 116:2613–2631. doi:10.1016/j.clinph.2005.07.005

    Article  Google Scholar 

  9. Junghöfer M, Elbert T, Tucker DM, Braun C (1999) The polar average reference effect: a bias estimating the head surface integral in EEG recording. Clin Neurophysiol 110(6):1149–1155. doi:10.1016/S1388-2457(99)00044-9

    Article  Google Scholar 

  10. Malmivuo J, Plonsey R (1995) Bioelectromagnetism–principles and application of bioelectric and biomagnetic fields. Oxford University Press, New York

    Google Scholar 

  11. Malmivuo J, Suihko V (1997) Sensitivity distributions of EEG and MEG measurements. IEEE Trans Biomed Eng 44(3):196–208

    Article  Google Scholar 

  12. Offner FF (1950) The EEG as potential mapping: the value of the average monopolar reference. Electroencephalogr Clin Neurophysiol 2(2):213–214. doi:10.1016/0013-4694(50)90040-X

    Google Scholar 

  13. Osselton JW (1965) Acquisition of EEG data by bipolar, unipolar and average reference methods: a theoretical comparison. Electroencephalogr Clin Neurophysiol 19(5):527–528. doi:10.1016/0013-4694(65)90195-1

    Article  Google Scholar 

  14. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr et al (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37:127–152. doi:10.1017/S0048577200000305

    Article  Google Scholar 

  15. Pikvik RT, Broughton RJ, Coppola R, Davidson RJ, Fox N, Nuwer MR (1993) Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 30(6):547–558. doi:10.1111/j.1469-8986.1993.tb02081.x

    Article  Google Scholar 

  16. Rappelsberger P (1989) The reference problem and mapping of coherence: a simulation study. Brain Topogr 2(1-2):63–71. doi:10.1007/BF01128844

    Article  Google Scholar 

  17. Rosenfeld JP (2000) Theoretical implications of EEG reference choice and related methodology issues. J Neurotherapy 4(2):77–87. doi:10.1300/J184v04n02_08

    Article  Google Scholar 

  18. Yao D (2001) A method to standardize a reference of scalp EEG recording to point at infinity. Physiol Meas 22:693–711. doi:10.1088/0967-3334/22/4/305

    Article  Google Scholar 

  19. Yao D, Wang L, Oostenveld R, Nielsen KD, Arendt-Nielsen L, Chen AC (2005) A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of infinity reference. Physiol Meas 26:173–184. doi:10.1088/0967-3334/26/3/003

    Article  Google Scholar 

  20. Yao D, Wang L, Arendt-Nielsen L, Chen AC (2007) The effect of reference choices on the spatio-temporal analysis of brain evoked potentials: the use of infinite reference. Comput Biol Med 37(11):1529–1538. doi:10.1016/j.compbiomed.2007.02.002

    Article  Google Scholar 

  21. Zhai Y, Yao D (2004) A study on the reference electrode standardization technique for a realistic head model. Comput Methods Programs Biomed 76:229–238. doi:10.1016/j.cmpb.2004.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Kimmo Olavi Paukkunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukkunen, A.K.O., Sepponen, R. The effect of ground electrode on the sensitivity, symmetricity and technical feasibility of scalp EEG recordings. Med Biol Eng Comput 46, 933–938 (2008). https://doi.org/10.1007/s11517-008-0375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0375-2

Keywords

Navigation