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Abstract 

We analysed the electroencephalogram (EEG) from Alzheimer’s disease (AD) patients with two 

non-linear methods: Approximate Entropy (ApEn) and Auto Mutual Information (AMI). ApEn 

quantifies regularity in data, while AMI detects linear and non-linear dependencies in time series. 

EEGs from 11 AD patients and 11 age-matched controls were analysed. ApEn was significantly 

lower in AD patients at electrodes O1, O2, P3 and P4 (p < 0.01). The EEG AMI decreased more 

slowly with time delays in patients than in controls, with significant differences at electrodes T5, 

T6, O1, O2, P3 and P4 (p < 0.01). The strong correlation between results from both methods 

shows that the AMI rate of decrease can be used to estimate the regularity in time series. Our work 

suggests that non-linear EEG analysis may contribute to increase the insight into brain dysfunction 

in AD, especially when different time scales are inspected, as is the case with AMI. 

Keywords: Alzheimer’s disease, electroencephalogram, approximate entropy, mutual information, 

non-linear analysis. 

AD: Alzheimer’s disease; AMI: Auto mutual information; ApEn: Approximate entropy; AUC: 

Area under the ROC curve; CMI: Cross mutual 

information; D2: Correlation dimension; EEG: 

Electroencephalogram; L1: Largest Lyapunov exponent; 

LZ: Lempel-Ziv; MI: Mutual information; MMSE: 

Mini-mental state examination; MSE: Multiscale 

entropy; ROC: Receiver operating characteristic; 

SampEn: Sample entropy; SD: standard deviation 

 

Introduction 

Alzheimer’s disease (AD) is a primary neurodegenerative disorder of unknown aetiology that 

gradually destroys brain cells and represents the most prevalent form of dementia in western 

countries [7]. AD is characterized by progressive impairments in cognition and memory whose 

course lasts several years prior to the death of the patient [23]. These clinical features are 

accompanied by histological changes in the brain, which include widespread cortical atrophy, 

intracellular deposition of neurofibrillary tangles and extracellular deposition of senile plaques, 

particularly in the hippocampus and the cerebral cortex [43]. Although a definite diagnosis is only 

possible by necropsy [42], a differential diagnosis with other types of dementia and with major 

depression should be attempted. Magnetic resonance imaging and computerized tomography can 

be normal in the early stages of AD but a diffuse cortical atrophy is the main sign in brain scans. 

Mental status tests are also useful. 

In order to improve quality diagnosis, electrical brain activity has been widely analysed using 

electroencephalogram (EEG) recordings. The EEG has proved to be useful in the characterization 

of different physiological or pathological conditions, such as, for example, sleep [29] or epilepsy 

[11], [18]. Particularly, the EEG has been used as a tool for diagnosing dementias for several 

decades. Several reasons explain why intensive research has been performed on the EEG in AD. 
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One reason is that AD is a cortical dementia in which EEG abnormalities are more frequently 

shown. Furthermore, coherence analysis of the EEG in AD allows non-invasive assessment of 

synaptic dysfunction [23]. In general, AD patients’ EEGs are characterized by a shift of the power 

spectrum to lower frequencies and a coherence decrease among cortical areas [23], although in the 

early stages of the disease the EEG may exhibit normal frequencies [28]. 

Non-linearity in the brain is introduced even at the neuronal level [5], since the dynamical 

behaviour of individual neurons is governed by threshold and saturation phenomena. Given the 

highly non-linear nature of the neuronal interactions at multiple levels of temporal and spatial 

scales, the EEG appears to be an appropriate area for non-linear time series analysis [26]. 

Furthermore, recent progress in the theory of non-linear dynamics has provided new methods to 

study the EEG [23], [45]. The investigations of the electrical brain activity have revealed possible 

medical applications, since analysis based on non-linear dynamics yields information unavailable 

using traditional EEG spectral-band analysis [39]. Moreover, it has been shown that non-linear 

analysis is useful to characterize the EEG in different pathological states like epilepsy [27], 

schizophrenia [41], or the Creutzfeldt-Jakob [6] and Parkinson’s diseases [44]. This has given rise 

to the possibility that the underlying mechanisms of the brain function may be explained in a more 

appropriate way by non-linear dynamics. A detailed review of the state of the art in EEG analysis 

with non-linear techniques can be found in [45]. 

Several authors have analysed the EEG in AD patients with non-linear methods. It has been 

shown that AD patients have lower correlation dimension (D2) values – a measure of the 

underlying system dimensional complexity – than control subjects [24], [39]. Furthermore, AD 

patients also have significantly lower values of the largest Lyapunov exponent (L1) – a metric that 

can be interpreted as a measure of the dynamical state of neuronal networks of the brain [41] – 

than controls in almost all EEG channels [24]. However, estimating the non-linear dynamical 

complexity of physiological time series using measures such as D2 and L1 is problematic, as the 

amount of data required for meaningful results in their computation is usually beyond the 

experimental possibilities [12]. Thus, the study of the EEG background activity with more suitable 

non-linear methods becomes necessary. 

The present study was undertaken to examine the EEG background activity in AD with two 

non-linear methods: approximate entropy (ApEn) and auto mutual information (AMI). ApEn is a 

family of statistics introduced to provide a widely applicable, statistically valid formula that will 
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distinguish data sets by a measure of regularity [33]. Preliminary evidence has shown its 

usefulness in different EEG studies [8], [40]. On the other hand, the mutual information (MI) 

provides a measure of both linear and non-linear statistical dependencies between two time series 

[25]. Applied to the EEG, MI has been used to describe the information transmission in the brain 

in different states [30], [48], to extract characterizing features in epileptic seizures [46] and to 

predict the response to anaesthesia [22]. In particular, the AMI – i.e. the MI between a time series 

and a delayed version of itself – can be useful in the characterization of a signal [25]. In this pilot 

study, we wanted to test the hypothesis that the non-linear characteristics of the EEG background 

activity in AD patients’ EEG would be different from those of age-matched controls, hence 

indicating an abnormal type of dynamics. Furthermore, we evaluated the possible correlation 

between the results obtained with both non-linear methods. Finally, we compared results with 

those obtained using other non-linear methods and the same database in previous works. 

Material and Methods 

Subjects and EEG recording 

Twenty-two subjects participated in this study. Eleven patients (5 men and 6 women; age = 

72.5 ± 8.3 years, mean ± standard deviation SD) fulfilling the criteria of probable AD were 

recruited from the Alzheimer’s Patients’ Relatives Association of Valladolid and referred to the 

University Hospital of Valladolid (Spain), where the EEG was recorded. All of them had 

undergone a thorough clinical evaluation that included clinical history, physical and neurological 

examinations and brain scans. Mini-Mental State Examination (MMSE) [14] was used to assess 

the cognitive function. The mean MMSE score for the patients was 13.1 ± 5.9 (Mean ± SD). Five 

of them had a score of less than 12 points, indicating a severe degree of dementia. 

The control group consisted of 11 age-matched control subjects without past or present 

neurological disorders (7 men and 4 women; age = 72.8 ± 6.1 years, mean ± SD). The MMSE 

score value was 30 for all control subjects. Informed consent was obtained from all control 

subjects and all caregivers of the demented patients. The study was approved by the local ethics 

committee. 

More than five minutes of EEG data from each subject were recorded with a Profile Study 

Room 2.3.411 EEG equipment (Oxford Instruments) at electrodes F3, F4, F7, F8, Fp1, Fp2, T3, 

T4, T5, T6, C3, C4, P3, P4, O1, O2, Fz, Cz and Pz of the international 10-20 system with linked 
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ear lobes reference. The sampling frequency was 256 Hz, with a 12-bit A-to-D precision. The EEG 

background activity from all control subjects and AD patients was recorded while they were 

awake, at rest and with their eyes closed and under vigilance control. All the traces from the 

control group showed a posterior alpha rhythm except two cases in which the EEGs were 

desynchronized. The patients’ EEGs showed a posterior alpha rhythm in the normal range or a 

slower rhythm (8-Hz alpha rhythm or theta-range activity) depending on the slowing of the 

tracing. In no case electroencephalographic signs of sleep were recorded. 

All EEG background activity recordings were visually inspected by a specialist physician to 

check for eye movement and other artefacts. Thus, only EEG data free from electro-oculographic 

and movement artefacts and with minimal electromyographic (EMG) activity were selected for 

non-linear analysis. Afterwards, EEGs were organized in 5 second artefact-free epochs (1280 

points) and were copied as ASCII files for off-line analysis on a personal computer. An average 

number of 30.0 ± 12.4 artefact-free epochs (Mean ± SD) were selected from each electrode and 

each subject. Furthermore, all recordings were digitally filtered with a Hamming window finite 

impulse response band-pass filter of 425th order with cut-off frequencies at 0.5 Hz and at 40 Hz, 

designed with Matlab
®
. The attenuation at the cut-off frequencies was fixed at 6 dB and all 

frequencies above 42Hz were attenuated more than 60 dB. The cut-off frequencies were chosen to 

remove the residual EMG activity and the noise owing to the electrical mains. 

Approximate entropy (ApEn) 

ApEn is a family of statistics recently introduced as a quantification of regularity in the data 

without any a priori knowledge about the system generating them [35]. It was constructed by 

Pincus [33], motivated by applications to short and noisy data sets, along with thematically similar 

lines to the Kolmogorov-Sinai entropy. However, the focus was different: to provide a widely 

applicable, statistically valid formula that will distinguish data sets by a measure of regularity [33]. 

ApEn is scale invariant and model independent and it discriminates series for which clear feature 

recognition is difficult [34]. Notably, it detects changes in underlying episodic behaviour not 

reflected in peak occurrences or amplitudes [36]. Moreover, ApEn can be applied to short time 

series and is finite for stochastic, noisy deterministic and composite processes [34]. 

ApEn assigns a non-negative number to a time series, with larger values corresponding to more 

irregularity in the data. Two input parameters, a run length m and a tolerance window r, must be 

specified. Briefly, ApEn measures the logarithmic likelihood that runs of patterns that are close 
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(within r) for m contiguous observations remain close (within the same tolerance width r) on 

subsequent incremental comparisons. ApEn(m, r, N), where N is the number of points of the time 

series, must be considered a family of characterizing measures: comparisons between time series 

can only be made with the same values of m, r and N [34]. 

Formally, given N data points from a time series {x(n)} = x(1), x(2), …,x(N), one should follow 

these steps to compute ApEn [34]: 

1. Form N–m+1 vectors X(1)…X(N–m+1) defined by: X(i) = [x(i), x(i+1),…, x(i+m–1)], i = 

1…N–m+1. 

2. Define the distance between X(i) and X(j), d[X(i),X(j)], as the maximum absolute difference 

between their respective scalar components, i.e. the maximum norm: 
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6. Theoretically, ApEn is defined as: 
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7. In practice, the number of data points N is finite. We implement this formula by defining the 

statistic [33]: 

( ) )()(,, 1 rrNrmApEn mm +−= φφ .    (5) 

ApEn has been used to characterize different biomedical signals [34]. In particular, it 

discriminates atypical EEGs [8] from normative counterparts. The possible usefulness of ApEn in 

epileptic seizure prediction has been suggested [40], but this claim has yet to be validated. 

Furthermore, ApEn has been used to quantify the depth of anaesthesia [49]. 

Although m and r are critical in determining the outcome of ApEn, no guidelines exist for 

optimising their values. In principle, the accuracy and confidence of the entropy estimate improve 

as the number of matches of length m and m + 1 increases. This can be done by choosing small m 

(short templates) and large r (wide tolerance). However, there are penalties for criteria that are too 
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relaxed [33]. It has been suggested to estimate ApEn with parameter values of m = 1 and 2, and r = 

0.1, 0.15, 0.2 and 0.25 times the SD of the original data sequence {x(n)} [34]. Normalizing r in 

this manner gives ApEn a translation and scale invariance; in this way it remains unchanged under 

uniform process magnification, reduction, or constant shift to higher or lower values [34]. 

Furthermore, it has been demonstrated that these input parameters produce good statistical 

reproducibility for ApEn for time series of length N ≥ 60, as considered herein [33], [35]. In this 

pilot study, ApEn was estimated with m = 1 and r = 0.25 times the SD of the original data 

sequence. In this way we selected a small m value and a large r value to improve the accuracy of 

the entropy estimate within the limits that produce good statistical reproducibility for ApEn. 

Auto mutual information (AMI) 

MI is a metric derived from Shannon’s information theory to estimate the information gained from 

observations of one random event on another [15], [38], [47]. MI measures both linear and non-

linear dependences between two time series [15], [38]. Hence, it can be regarded as a non-linear 

equivalent of the correlation function [20], [38]. Similarly to this linear statistic, MI can be applied 

to time-delayed versions of the same sequence – AMI – or to two different signals – cross mutual 

information function (CMI) – [25]. 

In general, the MI between two measurement xi and yi is the amount of information that the 

former provides about the latter. Thus, the AMI estimates, on average, the degree to which x(t+τ) 

can be predicted from x(t) [15], [25], [31]. The AMI between x(t) and x(t+τ) is [25]: 
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[ ]

[ ] [ ]











+⋅

+
⋅+= ∑

+
)()(

)(),(
log)(),( 2

)(),(
τ

τ
τ

τ

τ

ττ

τ
txPtxP

txtxP
txtxPI

XX

XX

txtx

XXXX . (6) 

[ ])(txPX
 is the probability density for the measurement x(t), while [ ])(),( τ

τ
+txtxPXX

 is the joint 

probability density for the measurements of x(t) and x(t+τ). 

It has been shown that the AMI rate of decrease with increasing time delays is correlated with 

the signal entropy [32], [37]. This fact has been used to characterize the EEG [25] and 

magnetoencephalogram (MEG) recordings [17] from AD patients in comparison with control 

subjects. This parameter was also applied to EEG signals from schizophrenic patients [30]. 

In this pilot study, the AMI was estimated over a time delay from 0 to 0.5 s and was normalized 

so that AMI(τ = 0) = 1. The AMI is based on the amplitude distributions of x(t) on different time 
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scales [10]. These distributions are estimated from histograms [4], [25]. For a fixed sequence 

length, if larger sampling bins are used to construct the histograms, the estimations of the average 

probabilities are more accurate. However, the joint probability distribution could be too flat and 

the MI could be underestimated. On the other hand, smaller partitions may enhance the changes in 

the joint probability distribution over short distances, but they produce fluctuations due to the 

small sample size. Thus, MI could be overestimated [25]. In this study, we used 12 bins to 

construct the histograms, which provided stable estimates and is similar to the number of bins that 

would be obtained using the criteria suggested in [10]. The probability densities in (Eq. 6) were 

estimated as follows:  

•••• Histograms of the signal x(t) and its time-delayed version x(t+τ) were constructed. 

•••• Probability distributions of x(t) and x(t+τ) were obtained as the ratio between the number 

of samples in each of the 12 bins and the total number of samples. 

•••• To calculate the joint probability distribution, the (x(t), x(t+τ)) plane was partitioned into a 

12x12 matrix. The joint probability density was obtained dividing the number of samples 

in each cell of the aforementioned plane by the total number of samples. 

The AMI rate of decrease was estimated using a least-squares fitting method assuming a first-

order monomial, y = ax + 1, where x denotes the time delay (measured in seconds) and y is the 

AMI curve. This rate of decrease (a) was calculated from a time delay 0 to the first relative 

minimum value, located as the point where the difference between the current sample and the 

previous one becomes non-negative. Therefore, different time scales were simultaneously taken 

into account when characterizing the signal. This methodology can be useful when no information 

is given in advance about the prominent time scales of a time series [20], [21], [31]. Furthermore, 

this decrease rate is correlated with the signal entropy [32]. Consequently, this variable can be 

considered a signal irregularity estimator and be used as a characterizing feature of the EEG. 

Statistical analysis 

Student’s t-test was used to evaluate the statistical differences between the ApEn values and the 

AMI rates of decrease for AD patients and control subjects. Differences were considered 

statistically significant if the p value was lower than 0.01. Normality of the data distribution was 

assessed with the Kolmogorv-Smirnov test, whereas homoscedasticity was analysed with Levene’s 
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test. Furthermore, the relationship between the AMI rate of decrease and ApEn was examined with 

Pearson’s linear correlation coefficient (ρ). 

Finally, the ability to discriminate AD patients from control subjects at the electrodes where p 

< 0.01 was evaluated using Receiver Operating Characteristic (ROC) curves [50]. We define the 

sensitivity as the rate of patients with a diagnosis of AD who test positive (i.e. the true positive 

rate), whereas the specificity represents the fraction of controls correctly recognized (i.e. the true 

negative rate). Accuracy is a related parameter that quantifies the total number of subjects (AD 

patients and control subjects) precisely classified. We set the optimum threshold as the cut-off 

point in which the highest accuracy (minimal false negative and false positive results) was 

obtained. 

Results 

ApEn was estimated for channels F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, P3, P4, O1 

and O2 with m = 1 and r = 0.25 times the SD of the original data sequence. The results are 

summarized in Table 1. It can be seen that ApEn was lower in AD patients than in control subjects 

at 15 electrodes, with significant differences between both groups (p < 0.01) at P3, P4, O1 and O2. 

These results suggest that the EEG activity of AD patients is more regular than in the control 

subjects’ brain. 

----------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 1 AROUND HERE 

----------------------------------------------------------------------------------------------------------------------- 

The normalized AMI curves of the control subjects and AD patients decrease with increasing 

values of the time delay for all subjects at all electrodes. Then, AMI curves show a transitory 

oscillation which decays as τ increases [25]. As an example of this characteristic, Figure 1(a) 

depicts the normalized AMI curves for two of these profiles, one obtained from an AD patient’s 

EEG epoch and other from a control subject’s one. Additionally, Figure 1(b) represents the 

average AMI curves of the control subjects and AD patients at electrode O2. Both profiles decrease 

gradually with increasing values of the time delay. In order to estimate the AMI rate of decrease, 

relative minimum values were located between the decreasing slope and the oscillations for each 

AMI curve obtained from every EEG epoch. The mean AMI rates of decrease for all electrodes are 

summarized in Table 2. These results show that, with the exception of electrode T4, the AMI 
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decreases more slowly in AD patients, with significant differences (p < 0.01) at T5, T6, P3, P4, O1 

and O2. 

----------------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 1 – IT CONSISTS OF TWO FIGURES: FIGURE 1(a) AND FIGURE 1(b) – 

AND TABLE 2 AROUND HERE 

----------------------------------------------------------------------------------------------------------------------- 

We evaluated the ability of both methods to discriminate AD patients from control subjects at 

the electrodes where significant differences were found using ROC plots. The sensitivity, 

specificity and accuracy values are shown in Table 3, where the optimum thresholds to achieve 

these values are also included. Accuracies were higher using the AMI rate of decrease, with values 

over 80% at the six electrodes were p < 0.01, reaching 90.91% at P3. On the other hand, the 

accuracies achieved with ApEn were always inferior to 80%. Furthermore, we evaluated the area 

under the ROC curve (AUC), as this parameter can be roughly used to classify the precision of a 

diagnostic test. The value for the AUC can be interpreted as follows: an area of 0.9339 (obtained 

with the AMI rate of decrease at electrode P3, for example) means that a randomly selected 

individual from the control subjects’ group has an AMI rate of decrease value smaller – i.e. more 

negative, meaning a faster decrease of the AMI curves – than that of a randomly chosen individual 

from the AD patients’ group in 93.39% of the time [50]. However, from Table 3 it seems that the 

accuracy differences between ApEn and the AMI rate of decrease do not correspond to important 

changes in the AUC. 

Finally, we examined the correlation between the ApEn values and the AMI rates of decrease. 

Our results show a strong correlation between both metrics, with ρ < –0.86 for all electrodes (p << 

0.01). The negative correlation index is due to the nature of the AMI rates of decrease, where a 

more negative value is associated with higher irregularity, while ApEn assigns smaller values to 

more regular time series. Figure 2 represents the ApEn values vs. the AMI rates of decrease at 

electrode P3 for control subjects and AD patients. 

----------------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 2 AROUND HERE 

----------------------------------------------------------------------------------------------------------------------- 
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Discussion and conclusions 

In this pilot study, we analysed the EEG background activity of 11 AD patients and 11 control 

subjects with ApEn and AMI. ApEn is a family of statistics that quantifies the regularity in time 

series, with increasing values corresponding to more irregularity [34]. AMI estimates the degree to 

which x(t+τ) can be predicted from x(t) [25]. Moreover, the AMI rate of decrease with increasing τ 

can be used to characterize a time series [25]. Both methods do not require a large number of data 

points to be reliably estimated [25], [34]. Particularly, estimating ApEn with m = 1 and r = 0.25 

times the SD of the data produces good statistical reproducibility for time series of length N ≥ 60, 

as considered herein [33], [35]. Thus, both metrics are much better suited for EEG analysis than 

traditional non-linear techniques such as L1 or D2. 

We found that ApEn was significantly lower in the AD patients’ EEG at electrodes P3, P4, O1 

and O2 (p < 0.01). Furthermore, our study shows that the AMI decreases more slowly with τ in AD 

patients. We estimated the AMI rate of decrease to characterize the EEG, and we found significant 

differences between both groups at electrodes T5, T6, P3, P4, O1 and O2 (p < 0.01). Some authors 

have chosen the AMI rate of decrease to quantify complexity in time series [25]. Our study reveals 

that the values of the AMI rate of decrease are strongly correlated with ApEn, something that could 

be expected [32], [37]. Given the fact that ApEn is a regularity estimator, the strong correlation 

between both metrics indicates that the AMI rate of decrease can be used to quantify the regularity 

of a time series instead of its complexity, as some authors have previously suggested [25]. A 

complexity measure should vanish for both completely regular and completely random system [9], 

something that does not happen with ApEn [19]. Moreover, a steeper decline of the AMI for a 

given time series does not necessarily point out that physiologic or physical complexity has 

increased, as it may be related to a breakdown in multiscale correlations or to more subtle 

alterations in non-linear control [16]. The negative relationship in the correlation between both 

metrics (as shown in Figure 2) is due to the fact that, while ApEn values are positive and larger in 

more irregular time series, the more negative AMI rates of decrease are associated with higher 

irregularity. 

We also evaluated the diagnostic accuracy of both methods with ROC curves. The AMI rate of 

decrease provided a more accurate classification than ApEn, with values over 80% at all electrodes 

where significant differences between AD patients and control subjects were found. This suggests 
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that, although both metrics are strongly correlated, the AMI rate of decrease might be more useful 

to differentiate AD patients from elderly control subjects. 

We have previously analysed the same EEG dataset with other non-linear techniques, such as 

sample entropy (SampEn) [2], Lempel-Ziv (LZ) complexity [3] or multiscale entropy (MSE) [13]. 

A detailed description of these metrics can be found in the previous references. Basically, SampEn 

is a family of statistics closely related to ApEn introduced to quantify the regularity of a time series 

and to reduce the ApEn bias. With parameter values m =1 and r = 0.25 times the SD of the data, 

we found that AD patients have significantly lower SampEn values than control subjects at 

electrodes O1, O2, P3 and P4 (p < 0.01) [2]. LZ complexity is a non-parametric measure of 

complexity in a one-dimensional signal related to the number of distinct substrings and the rate of 

their recurrence. The signal must be transformed into a finite symbol sequence before calculating 

the LZ complexity value. Our results suggested that a three symbol conversion might give more 

detailed insight into the differences between the AD patients and control subjects’ EEGs than a 

binary conversion [3]. Particularly, we found a significantly reduced LZ complexity (p < 0.01) at 

electrodes T5, P3, P4 and O1 in AD patients. [3]. Finally, MSE is a measure of complexity based 

on the analysis of the original signal on different temporal scales. It is based on successive 

computations of SampEn on coarse-grained sequences, each of which represents the system 

dynamics on a different time scale. The MSE was estimated with m = 1, r = 0.25 times the SD of 

the original time series and a maximum time scale εMAX = 12. The analysis of our AD patients and 

control subjects’ database with MSE showed important differences in the shape of the MSE 

profiles on the larger time scales, with significant differences at electrodes F3, F7, Fp1, Fp2, T5, 

T6, P3, P4, O1 and O2 (p < 0.01) [13]. All these techniques can be applied to relatively short and 

noisy time series, irrespective of whether their origin is stochastic or deterministic. Table 3 

summarizes the test results for ApEn, the AMI rate of decrease, SampEn, LZ complexity and MSE. 

----------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 3 AROUND HERE 

----------------------------------------------------------------------------------------------------------------------- 

As expected, results with SampEn and ApEn were similar due to the relation between both 

metrics. However, the accuracy was slightly lower with ApEn than with SampEn at electrode P4 

[2]. Accuracies reached 81.82% at 3 electrodes with LZ complexity, improving the results obtained 

with ApEn [3]. On the other hand, the inspection of EEG signals with MSE revealed their complex 
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structure [13]. As the MSE profile values are higher in control subjects than in AD patients for 

most scales, it can be concluded that EEG background activity is less complex in patients, 

something that is also in agreement with our LZ complexity results [13]. Furthermore, the MSE 

profile slope for large time scales in AD patients is significantly different than in control subjects 

at 10 electrodes while LZ complexity only showed them at 4 electrodes. A possible explanation for 

this result might be that the inspection of different time scales provides an advantage in 

comparison to the use of other non-linear measures based on one time scale only when analysing 

physiological signals [9], [20], [31]. In addition, the comparison of results obtained with the AMI 

rates of decrease and other non-linear regularity metrics, like ApEn and SampEn, substantiates this 

claim. Furthermore, the classification accuracies obtained with the slope of the MSE profiles or the 

AMI rates of decrease are generally higher than using ApEn, SampEn or LZ complexity. This 

suggests that the analysis of different time scales could provide additional information that may 

improve AD diagnosis. On the other hand, both MSE and AMI results are based on the estimation 

of characteristics from graphical representations (i.e. slopes in plots), while ApEn, SampEn and LZ 

complexity results are directly obtained from the EEG time series. 

Our results are consistent with previous studies showing changes in the EEG of AD patients in 

comparison to age-matched control subjects with different non-linear metrics [1], [24], [25], [39], 

[44]. The abnormalities in the AD patients’ EEG could be explained by a change of the dynamics 

in the brain. However, the implications of this EEG changes are not clear. Among others, three 

mechanisms can be responsible for it: neuronal death, a general effect of neurotransmitter 

deficiency and loss of connectivity of local neural networks [23]. 

Some limitations of this pilot study must be mentioned. Firstly, the sample size was small. To 

prove the usefulness of these techniques as an AD diagnostic tool, this approach should be 

extended on a much larger patient population. Moreover, as physicians only make a diagnosis of 

AD with an accuracy of about 90%, the sample may not fully represent this disease. Moreover, the 

detected regularity increase in the EEG is not specific to AD and further work must be carried out 

to examine non-linear EEG activity in other types of dementia. 

In summary, our findings show the possibility to analyse the dynamical behaviour of the brain 

in AD patients and to detect significant differences with ApEn and AMI. The strong correlation 

between results from both methods suggests that the AMI rate of decrease can be used to estimate 

the regularity in time series. Although these techniques cannot yet be applied as a diagnostic tool, 
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our results prove the potential applications of these methods in reflecting differences in the 

irregularity of EEG data time series of patients with a diagnosis of AD and control subjects. The 

decrease of the EEG regularity leads us to think that EEG analysis with ApEn and AMI could be a 

useful tool to increase our insight into brain dysfunction in this disease. Furthermore, the 

comparison of our results with those obtained using non-linear metrics based on just one time 

scale suggests that the analysis of different time scales with AMI might provide a better insight 

into the EEG background activity characteristics and the changes associated with AD. In addition, 

these methods could also be useful to characterize the EEG in other cerebral disorders like, for 

instance, Parkinson’s disease, vascular dementia, epilepsy or schizophrenia. 

Acknowledgments 

This work was supported by grant projects VA102A06 and VA108A06 from Consejería de 

Educación de la Junta de Castilla y León and by a grant project from Ministerio de Educación y 

Ciencia and FEDER grant MTM 2005-08519-C02-01. 

References 

[1] Abásolo D, Hornero R, Espino P et al (2005) Analysis of regularity in the EEG 

background activity of Alzheimer's disease patients with Approximate Entropy. Clin Neurophysiol 

116:1826–1834 DOI 10.1016/j.clinph.2005.04.001 

[2] Abásolo D, Hornero R, Espino P et al (2006) Entropy analysis of the EEG background 

activity in Alzheimer’s disease patients. Physiol Meas 27:241−253 DOI 10.1088/0967-

3334/27/3/003 

[3] Abásolo D, Hornero R, Gómez C et al (2006) Analysis of EEG background activity in 

Alzheimer’s disease patients with Lempel-Ziv complexity and Central Tendency Measure. Med 

Eng Phys 28:315–322 DOI 10.1016/j.medengphy.2005.07.004 

[4] Alonso J F, Mañanas M A, Hoyer D et al (2007) Evaluation of respiratory muscles 

activity by means of mutual information function at different levels of ventilatory effort. IEEE 

Trans Biomed Eng 54:1573–1582 DOI: 10.1109/TBME.2007.893494 

[5] Andrzejak R G, Lehnertz K, Moormann F et al (2001) Indications of nonlinear 

deterministic and finite-dimensional structures in time series of brain electrical activity: 

Dependence on recording region and brain state. Phys Rev E 64:061907 DOI 

10.1103/PhysRevE.64.061907 

[6] Babloyantz A, Destexhe A (1988) The Creutzfeldt-Jakob disease in the hierarchy of 

chaotic attractors in From chemical to biological organization, Markus M, Müller S, Nicolis G, 

(Eds.) Springer-Verlag, Berlin 307–316 

[7] Bird T D (2001) Alzheimer’s disease and other primary dementias in Harrison’s 

principles of internal medicine, Braunwald E, Fauci A S, Kasper D L et al (Eds), The McGraw-

Hill Companies Inc, New York, NY 2391–2399 

[8] Bruhn J, Röpcke H, Rehberg B et al (2000) Electroencephalogram approximate entropy 

correctly classifies the occurrence of burst suppression pattern as increasing anesthetic drug effect. 

Anesthesiology 93:981–985 

[9] Costa M, Goldberger A L, Peng C K (2005) Multiscale entropy analysis of biological 

signals Phys Rev E 71:021906. DOI 10.1103/PhysRevE.71.021906 

[10] David O, Cosmelli D, Friston K J (2004) Evaluation of different measures of functional 

connectivity using a neural mass model. Neuroimage 21:659–673 DOI 

10.1016/j.neuroimage.2003.10.006 



15 

[11] De Lucia M, Fritschy J, Dayan P et al (2008) A novel method for automated classification 

of epileptiform activity in the human electroencephalogram-based on independent component 

analysis. Med Biol Eng Comput 46:263–272 DOI 10.1007/s11517-007-0289-4 

[12] Eckmann J P, Ruelle D (1992) Fundamental limitations for estimating dimensions and 

Lyapunov exponents in dynamical systems. Physica D 56:185–187 DOI 10.1016/0167-

2789(92)90023-G 

[13] Escudero J, Abásolo D, Hornero R et al (2006) Analysis of electroencephalograms in 

Alzheimer’s disease patients with multiscale entropy. Physiol Meas 27:1091–1106 DOI 

10.1088/0967-3334/27/11/004 

[14] Folstein M F, Folstein S E, McHugh P R (1975) Mini-mental state. A practical method 

for grading the cognitive state of patients for the clinician, J Psychiat Res 12:189-198 DOI 

10.1016/0022-3956(75)90026-6 

[15] Fraser A M, Swinney H L (1986) Independent coordinates for strange attractors from 

mutual information. Phys Rev A 33:1134–1140 DOI 10.1103/PhysRevA.33.1134 

[16] Goldberger A L, Peng C K, Lipsitz L A (2002) What is physiologic complexity and how 

does it change with aging and disease? Neurobiol Aging 23:23–26 DOI 10.1016/S0197-

4580(01)00266-4 

[17] Gómez C, Hornero R, Abásolo D et al (2007) Analysis of the magnetoencephalogram 

background activity in Alzheimer’s disease patients with auto mutual information. Comput Meth 

Prog Bio 87:239–247 DOI 10.1016/j.cmpb.2007.07.001 

[18] Hesse C W, James C J (2007) Tracking and detection of epileptiform activity in 

multichannel ictal EEG using signal subspace correlation of seizure source scalp topographies. 

Med Bio Eng Comput 45:909–916 DOI 10.1007/s11517-006-0103-8 

[19] Hornero R, Aboy M, Abásolo D et al (2005) Interpretation of approximate entropy: 

analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE 

Trans Biomed Eng 52:1671–1680 DOI 10.1109/TBME.2005.855722 

[20] Hoyer D, Pompe B, Chon K H et al (2005) Mutual information function assesses 

autonomic information flow of heart rate dynamics at different time scales. IEEE Trans Biomed 

Eng 52:584–592 DOI 10.1109/TBME.2005.844023 

[21] Hoyer D, Friedrich H, Frank B et al (2006) Autonomic information flow improves 

prognostic impact of task force HRV monitoring. Comput Meth Prog Bio 81:246–255 DOI 

10.1016/j.cmpb.2006.01.002 

[22] Huang L, Yu P, Ju F et al (2003) Prediction of response to incision using the mutual 

information of electroencephalogram during anaesthesia. Med Eng Phys 25:321–327 DOI 

10.1016/S1350-4533(02)00249-7 

[23] Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 

115:1490–1505 DOI 10.1016/j.clinph.2004.01.001 

[24] Jeong J, Chae J H, Kim S Y et al (2001) Nonlinear dynamic analysis of the EEG in 

patients with Alzheimer’s disease and vascular dementia. J Clin Neurophysiol 18:58–67. 

[25] Jeong J, Gore J C, Peterson B S (2001) Mutual information analysis of the EEG in 

patients with Alzheimer’s disease. Clin Neurophysiol 112:827–835 DOI 10.1016/S1388-

2457(01)00513-2 

[26] Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. Cambridge University 

Press, Cambridge. 

[27] Lehnertz K, Mormann F, Kreuz T et al (2003) Seizure prediction by nonlinear EEG 

analysis. IEEE Eng Med Biol 22:57–63 DOI 10.1109/MEMB.2003.1191451 

[28] Markand O N (1990) Organic brain syndromes and dementias in Current Practice of 

Clinical Electroencephalography, Daly D D, Pedley T A (Eds), Raven Press, New York 401–423. 

[29] Mendez M O, Bianchi A M, Montano N et al (2008) On arousal from sleep: time-

frequency análisis. Med Biol Eng Comput 46:341–351 DOI 10.1007/s11517-008-0309-z 

[30] Na S H, Jin S H, Kim S Y et al (2002) EEG in schizophrenic patients: mutual information 

analysis. Clin Neurophysiol 113:1954–1960 DOI 10.1016/S1388-2457(02)00197-9 

[31] Palacios M, Friedrich H, Götze C et al (2007) Changes of autonomic information flow 

due to idiopathic dilated cardiomyopathy. Physiol Meas 28:677–688 DOI 10.1088/0967-

3334/28/6/006 

[32] Palus M (1996) Coarse-grained entropy rates for characterization of complex time series. 

Physica D 93:64–77 DOI 10.1016/0167-2789(95)00301-0 

[33] Pincus S M (1991) Approximate entropy as a measure of system complexity. Proc Natl 

Acad Sci USA 88:2297–2301. 



16 

[34] Pincus S M (2001) Assessing serial irregularity and its implications for health. Ann NY 

Acad Sci 954:245–267. 

[35] Pincus S M, Goldberger A L (1994) Physiological time series analysis: what does 

regularity quantify? Am J Physiol (Heart Circ Physiol) 266:H1643–H1656. 

[36] Pincus S M, Keefe D L (1992) Quantification of hormone pulsatility via an approximate 

entropy algorithm. Am J Physiol (Endocrinol Metab) 262:E741–E754. 

[37] Pompe B (1993) Measuring statistical dependencies in a time series. J Stat Phys 73:587–

610 DOI 10.1007/BF01054341 

[38] Pompe B, Blidh P, Hoyer D et al (1998) Using mutual information to measure coupling in 

the cardiorespiratory system. IEEE Eng Med Biol 17:32–39 DOI 10.1109/51.731318 

[39] Pritchard W S, Duke D W, Coburn K L et al (1994) EEG-based neural-net predictive 

classification of Alzheimer’s disease versus control subjects is augmented by non-linear EEG 

measures. Electroenceph Clin Neurophysiol 91:118–130 DOI 10.1016/0013-4694(94)90033-7 

[40] Radhakrishnan N, Gangadhar B N (1998) Estimating regularity in epileptic seizure time-

series data. A complexity-measure approach. IEEE Eng Med Biol 17:89–94 DOI 

10.1109/51.677174 

[41] Röschke J, Fell J, Beckmann P (1995) Non-linear analysis of sleep EEG data in 

schizophrenia: calculation of the principal Lyapunov exponent. Psychiatr Res 56:257–269 DOI 

10.1016/0165-1781(95)02562-B 

[42] Rossor M (2001) Alzheimer’s disease in Brain’s Diseases of the Nervous System, 

Donaghy M (Ed.) Oxford University Press, Oxford 750–754. 

[43] Selkoe D J (1994) Cell biology of the amyloid beta-protein precursor and the mechanism 

of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403 DOI 

10.1146/annurev.cb.10.110194.002105 

[44] Stam C J, Jelles B, Achtereekte H A M et al (1995) Investigation of EEG non-linearity in 

dementia and Parkinson’s disease. Electroenceph Clin Neurophysiol 95:309–317 DOI 

10.1016/0013-4694(95)00147-Q 

[45] Stam C J (2005) Nonlinear dynamical analysis of EEG and MEG: Review of an emerging 

field. Clin Neurophysiol. 116:2266–2301 DOI 10.1016/j.clinph.2005.06.011 

[46] Varma N K, Kushwaha R, Beydoun A et al (1997) Mutual information analysis and 

detection of interictal morphological differences in interictal epileptiform discharges of patients 

with partial epilepsies. Electroenceph Clin Neurophysiol 103: 426–433. DOI 10.1016/S0013-

4694(97)00039-4 

[47] Vastano J A, Swinney H L (1988) Information transport in spatiotemporal systems. Phys 

Rev Lett 60:1773–1776 DOI 10.1103/PhysRevLett.60.1773 

[48] Xu J, Liu Z R, Liu R et al (1997) Information transformation in human cerebral cortex. 

Physica D 106:363–374 DOI 10.1016/S0167-2789(97)00042-0 

[49] Zhang X S, Roy R J (2001) Derived fuzzy knowledge model for estimating the depth of 

anesthesia. IEEE Trans Biomed Eng 48:312–323 DOI 10.1109/10.914794 

[50] Zweig M H, Campbell G (1993) Receiver-Operating Characteristic (ROC) plots: a 

fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577. 



17 

 

Electrode 
Control subjects 

(mean ± SD) 

AD patients 

(mean ± SD) 
p 

F3 0.7378 ± 0.1821 0.6288 ± 0.1181 0.1115 

F4 0.7100 ± 0.2028 0.6933 ± 0.1371 0.8242 

F7 0.7732 ± 0.2072 0.7349 ± 0.1634 0.6355 

F8 0.7867 ± 0.1775 0.7309 ± 0.1563 0.4426 

Fp1 0.7182 ± 0.1649 0.5641 ± 0.2006 0.0631 

Fp2 0.6994 ± 0.2194 0.5745 ± 0.1363 0.1243 

T3 0.9580 ± 0.2869 0.9236 ± 0.2472 0.7663 

T4 0.9296 ± 0.2485 0.9342 ± 0.3186 0.9701 

T5 0.9125 ± 0.1953 0.6936 ± 0.2081 0.0193 

T6 0.8976 ± 0.2018 0.6914 ± 0.2179 0.0322 

C3 0.8363 ± 0.1670 0.7291 ± 0.1954 0.1820 

C4 0.8490 ± 0.1384 0.7703 ± 0.2150 0.3198 

P3* 0.8599 ± 0.1331 0.6088 ± 0.1817 0.0014 

P4* 0.8644 ± 0.1320 0.6423 ± 0.1753 0.0031 

O1* 0.9714 ± 0.1801 0.6989 ± 0.1939 0.0027 

O2* 0.9357 ± 0.2051 0.6867 ± 0.1961 0.0086 

 

Table 1. Average ApEn(m = 1, r = 0.25) for control subjects and AD patients in all channels. 

Results are shown as mean ± standard deviation (SD). Significant differences are marked with an 

asterisk. 
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Electrode 
Control subjects 

(mean ± SD) 

AD patients 

(mean ± SD) 
p 

F3 -32.22 ± 9.22 -25.30 ± 4.43 0.0363 

F4 -32.56 ± 7.42 -27.36 ± 6.21 0.0894 

F7 -32.35 ± 9.75 -29.76 ± 9.05 0.5244 

F8 -34.13 ± 9.05 -29.95 ± 8.83 0.2855 

Fp1 -32.11 ± 8.55 -23.26 ± 5.99 0.0108 

Fp2 -30.39 ± 9.53 -21.74 ± 5.64 0.0174 

T3 -38.78 ± 11.87 -37.43 ± 13.12 0.8029 

T4 -38.32 ± 10.10 -38.89 ± 16.91 0.9247 

T5* -37.98 ± 8.99 -24.79 ± 7.48 0.0013 

T6* -37.09 ± 8.32 -26.59 ± 8.51 0.0084 

C3 -35.60 ± 7.72 -30.67 ± 8.10 0.1595 

C4 -36.48 ± 8.36 -32.34 ± 9.29 0.2856 

P3* -37.08 ± 7.26 -24.13 ± 6.91 0.0004 

P4* -37.52 ± 6.95 -25.55 ± 6.76 0.0006 

O1* -39.97 ± 8.83 -26.33 ± 8.33 0.0013 

O2* -37.33 ± 9.30 -25.99 ± 8.30 0.0068 

 

Table 2. Average AMI rates of decrease for control subjects and AD patients in all channels. 

Results are shown as mean ± standard deviation (SD). Significant differences are marked with an 

asterisk. 
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AUC: Area under the ROC (Receiver Operating Characteristic) curve 

 

Table 3. Test results for ApEn, the AMI rate of decrease, SampEn, LZ complexity and MSE on the 

channels in which the differences between both groups were significant. The optimum threshold to 

discriminate AD patients and control subjects and the area under the ROC curve are also included. 

Method Electrode Threshold 
Sensitivity 

(%)
 

Specificity 

(%)
 

Accuracy 

(%)
 AUC 

ApEn(m=1, 

r=0.25) 

P3 0.7326 72.73 81.82 77.27 0.8595 

P4 0.7381 63.64 81.82 72.73 0.8264 

O1 0.8181 81.82 72.73 77.27 0.8595 

O2 0.8190 90.91 63.64 77.27 0.7769 

AMI rate of 

decrease 

T5 -31.60 90.91 72.73 81.82 0.8678 

T6 -31.03 81.82 81.82 81.82 0.8512 

P3 -34.43 100.00 81.82 90.91 0.9339 

P4 -30.70 81.82 81.82 81.82 0.9091 

O1 -31.86 81.82 81.82 81.82 0.8678 

O2 -30.72 81.82 81.82 81.82 0.8264 

SampEn(m=1, 

r=0.25) 

P3 0.6658 72.73 81.82 77.27 0.8512 

P4 0.6740 63.64 90.91 77.27 0.8347 

O1 0.7492 81.82 72.73 77.27 0.8595 

O2 0.7367 90.91 63.64 77.27 0.7769 

LZ complexity 

(3 symbol 

conversion) 

T5 0.4161 72.73 72.73 72.73 0.8017 

P3 0.3962 81.82 81.82 81.82 0.8926 

P4 0.3485 72.73 90.91 81.82 0.8430 

O1 0.4412 90.91 72.73 81.82 0.8512 

Slope of 

MSE(m=1, 

r=0.25, 12 

scales) for 

large time 

scales 

F3 -0.0037 81.82 81.82 81.82 0.8430 

F7 -0.0020 81.82 72.73 77.27 0.8347 

Fp1 -0.0026 90.91 90.91 90.91 0.9339 

Fp2 -0.0113 100 72.73 86.36 0.8512 

T5 -0.0167 90.91 81.82 86.36 0.9174 

T6 -0.0155 81.82 81.82 81.82 0.9008 

P3 -0.0119 81.82 90.91 86.36 0.9174 

P4 -0.0097 72.73 90.91 81.82 0.8512 

O1 -0.0116 81.82 90.91 86.36 0.9174 

O2 -0.0079 81.82 81.82 81.82 0.8760 
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(a) 

 

(b) 

 

Figure 1. (a) Normalized AMI curves obtained from one AD patient’s epoch and from a control 

subject’s one. (b) Normalized AMI curves of the 11 control subjects and 11 AD patients at 

electrode O2. 
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Figure 2. ApEn values versus the AMI rates of decrease for AD patients (circumferences) and 

control subjects (asterisks) at electrode P3. Pearson’s correlation index is ρ = –0.95373. The 

straight line that fits the data in a least-squares sense has been plotted. 


