Skip to main content
Log in

Multi-objective blood glucose control for type 1 diabetes

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

For people with type 1 diabetes, automatic controllers aim to maintain the blood glucose concentration within the desired range of 60–120 mg/dL by infusing the appropriate amount of insulin in the presence of meal and exercise disturbances. Blood glucose concentration outside the desired range can be harmful to an individual’s health but concentration below 60 mg/dL, a state known as hypoglycemia, is considered to be more harmful than the concentration above 120 mg/dL, a state known as hyperglycemia. In this paper, two techniques to address this issue within a multi-parametric model based control framework are presented. The first technique introduces asymmetry into the objective function to penalize the deviation towards hypoglycemia more than the deviation towards hyperglycemia. The second technique is based upon placing higher priority on satisfaction of constraints on hypoglycemia than on satisfaction of constraints on hyperglycemia. The performance of both the control techniques is analyzed and compared in the presence of disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acevedo J, Pistikopoulos EN (1997) A multiparametric programming approach for linear process engineering problems under uncertainty. Ind Eng Chem Res 36:717–728. doi:10.1021/ie960451l

    Article  Google Scholar 

  2. Bellazi R, Nucci G, Cobelli C (2001) The subcutaneous route to insulin-dependent diabetes therapy. IEEE Eng Med Biol 20:54–64. doi:10.1109/51.897828

    Article  Google Scholar 

  3. Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for constrained systems. Automatica 38:3–20. doi:10.1016/S0005-1098(01)00174-1

    Article  MATH  MathSciNet  Google Scholar 

  4. Bergman RN, Philips LS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man: Measurement of insulin sensitivity and β-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 68:1456–1467. doi:10.1172/JCI110398

    Article  Google Scholar 

  5. Clemens AH (1979) Feedback control dynamics for glucose controlled insulin infusion system. Med Prog Technol 6:91–98

    Google Scholar 

  6. DCCT-The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986. doi:10.1056/NEJM199309303291401

    Google Scholar 

  7. Doyle FJ III, Dorski C, Harting JE, Peppas NA (1995) Control and modeling of drug delivery devices for the treatment of diabetes. In: Proceedings of the American control conference, Seattle, pp 776–780

  8. Dua P, Doyle FJIII, Pistikopoulos EN (2006) Model based blood glucose control for type 1 diabetes via parametric programming. IEEE Trans Biomed Eng 53:1478–1491. doi:10.1109/TBME.2006.878075

    Article  Google Scholar 

  9. Dua V, Pistikopoulos EN (2000) An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann Oper Res 99:123–129. doi:10.1023/A:1019241000636

    Article  MATH  MathSciNet  Google Scholar 

  10. Dua V, Bozinis NA, Pistikopoulos EN (2002) A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput Chem Eng 26:715–733. doi:10.1016/S0098-1354(01)00797-9

    Article  Google Scholar 

  11. Fabietti PG, Canonico V, Federici MO, Benedetti MM, Sarti E (2006) Control oriented model of insulin and glucose dynamics in type 1 diabetics. Med Biol Eng Comput 44:69–78. doi:10.1007/s11517-005-0012-2

    Article  Google Scholar 

  12. Fisher ME, Teo KL (1989) Optimal insulin infusion resulting from a mathematical model of blood glucose dynamics. IEEE Trans Biomed Eng 36:479–486. doi:10.1109/10.18755

    Article  Google Scholar 

  13. Fisher ME (1991) A semiclosed loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans Biomed Eng 38:57–61. doi:10.1109/10.68209

    Article  Google Scholar 

  14. Gal T (1995) Postoptimal analyses, parametric programming and related topics, 2nd edn. Walter de Gruyter, New York

    Google Scholar 

  15. Garcia CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—a survey. Automatica 25:335–348. doi:10.1016/0005-1098(89)90002-2

    Article  MATH  Google Scholar 

  16. Hejlesen OK, Andreassen S, Frandsen NE, Sorensen TB, Sando SH, Hovorka R, Cavan DA (1998) Using a double blind controlled clincial trial to evaluate the function of a Diabetes Advisory System: a feasible approach? Comput Methods Programs Biomed 56:165–173. doi:10.1016/S0169-2607(98)00023-6

    Article  Google Scholar 

  17. Hernjak N, Doyle FJIII (2005) Glucose control design using nonlinearity assessment techniques. AIChE J 51:544–554. doi:10.1002/aic.10326

    Article  Google Scholar 

  18. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Wilinska ME (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25:905–920. doi:10.1088/0967-3334/25/4/010

    Article  Google Scholar 

  19. Huber D, Talary M, Dewarrat F, Caduff A (2007) The compensation of perturbing temperature fluctuation in glucose monitoring technologies based on impedance spectroscopy. Med Biol Eng Comput 45:863–876. doi:10.1007/s11517-007-0229-3

    Article  Google Scholar 

  20. Lehmann ED, Deutsch T (1992) A physiological model of glucose–insulin interaction in type 1 diabetes mellitus. J Biomed Eng 14:235–242. doi:10.1016/0141-5425(92)90058-S

    Article  Google Scholar 

  21. Lynch SM, Bequette BW (2001) Estimation-based model predictive control of blood glucose in type I diabetics: a simulation study. In: Proceedings of the IEEE 27th annual Northeast bioengineering conference, pp 79–80

  22. Lynch SM, Bequette BW (2002) Model predictive control of blood glucose in type I diabetic patients. In: Proceedings of the American control conference, Anchorage, pp 4039–4043

  23. MATLAB (2005) The MathWorks Inc., Natick, MA

  24. Ollerton RL (1989) Application of optimal control theory to diabetes mellitus. Int J Control 50:2503–2522. doi:10.1080/00207178908953512

    Article  MATH  MathSciNet  Google Scholar 

  25. Palerm CC, Willis JP, Desemone J, Bequette BW (2005) Hypoglycemia prediction and detection using optimal estimation. Diabetes Technol Ther 7:3–14. doi:10.1089/dia.2005.7.3

    Article  Google Scholar 

  26. Parker RS, Doyle FJIII (1999) A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 46:148–157. doi:10.1109/10.740877

    Article  Google Scholar 

  27. Parker RS, Gatzke EP, Doyle FJ III (2000) Advanced model predictive control (MPC) for type I diabetic patient blood glucose control. In: Proceedings of the American control conference, Chicago, pp 3483–3487

  28. Parker RS, Doyle FJIII, Ward JH, Peppas NA (2000) Robust H glucose control in diabetes using a physiological model. AIChE J 46:2537–2549. doi:10.1002/aic.690461220

    Article  Google Scholar 

  29. Parker RS, Doyle FJIII, Peppas NA (2001) The intravenous route to blood glucose control. IEEE Eng Med Biol 20:65–73. doi:10.1109/51.897829

    Article  Google Scholar 

  30. Pistikopoulos EN, Dua V, Bozinis NA, Bemporad A, Morari M (2002) On-line optimization via off-line parametric optimization tools. Comput Chem Eng 26:175–185. doi:10.1016/S0098-1354(01)00739-6

    Article  Google Scholar 

  31. Pistikopoulos EN, Bozinis NA, Dua V Perkins JD, Sakizlis V (2002) Improved process control, European Patent WO 02/097540 A1

  32. Pistikopoulos EN, Georgiadis M, Dua V (2007) Multi-parametric programming, Process Systems Engineering: Vol. 1. Wiley-VCH, Weinheim

    Google Scholar 

  33. Pistikopoulos EN, Georgiadis M, Dua V (2007) Multi-parametric model-based control, process systems engineering, vol 2. Wiley, Weinheim

    Google Scholar 

  34. Reach G, Wilson GS (1992) Can continuous glucose monitoring be used for the treatment of diabetes. Anal Chem 64:A381–A386. doi:10.1021/ac00030a001

    Article  Google Scholar 

  35. Sorensen JT (1985) A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. PhD thesis. Massachusetts Institute of Technology (MIT), Cambridge, USA

    Google Scholar 

  36. Tyler ML, Morari M (1999) Propositional logic in control and monitoring problems. Automatica 35:565–582. doi:10.1016/S0005-1098(98)00198-8

    Article  MATH  MathSciNet  Google Scholar 

  37. Yamaguchi M, Kaseda C, Yamazaki K, Kobayashi M (2006) Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining. Med Biol Eng Comput 44:451–457. doi:10.1007/s11517-006-0049-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios N. Pistikopoulos.

Appendix

Appendix

This appendix presents an algorithm for the solution of multi-parametric Mixed Integer Linear Programs (mp-MILP) of the following form [9]:

$$ \begin{aligned}&J(x(t)) = \mathop {\min }\limits_{{\pi_{c} ,\pi_{d} }} \phi_{1}^{\text{T}} \pi_{c} + \phi_{2}^{\text{T}} \pi_{d} \\&s.t.\quad G_{c} \pi_{c} + G_{d} \pi_{d} \le S + Fx(t)\end{aligned} $$
(A.1)

where ϕ 1 and ϕ 2 are constant vectors, π c and π d are vectors of continuous and discrete variables, respectively, and G c , G d , S and F are constant vectors and matrices of appropriate dimensions.

An initial feasible πd is obtained by solving the following MILP:

$$ \begin{aligned}&\mathop {\min }\limits_{{\pi_{c} ,\pi_{d} ,x(t)}} \phi_{1}^{\text{T}} \pi_{c} + \phi_{2}^{\text{T}} \pi_{d} \\&s.t.\quad G_{c} \pi_{c} + G_{d} \pi_{d} \le S + Fx(t)\end{aligned} $$
(A.2)

where x(t) is treated as a vector of free variables to find a starting feasible integer solution. Let the solution of (A.2) be given by \( \pi_{d} = \bar{\pi }_{d} . \)

Fix \( \pi_{d} = \bar{\pi }_{d} \) in (A.1) to obtain a multi-parametric LP problem of the following form:

$$ \begin{aligned}&\hat{J}(x(t)) = \mathop {\min }\limits_{{\pi_{c} }} \phi_{1}^{\text{T}} \pi_{c} + \phi_{2}^{\text{T}} \bar{\pi }_{d} \\&s.t.\quad G_{c} \pi_{c} + G_{d} \bar{\pi }_{d} \le S + Fx(t)\end{aligned} $$
(A.3)

The solution of the multi-parametric LP [14] subproblem in (A.3) which represents a parametric upper bound on the final solution is given by (i) a set of parametric profiles, \( \hat{J}( {x( t )} )^{i} , \) and the corresponding critical regions, CR i, and (ii) a set of infeasible regions where \( \hat{J}( {x( t )} )^{i} = \infty . \)

For each critical region, CR i, obtained from the solution of the multi-parametric LP subproblem in (A.3), an MILP subproblem is formulated as follows:

$$\begin{aligned}&\mathop {\min }\limits_{{\pi_{c} ,\pi_{d} ,x(t)}} \phi_{1}^{\text{T}} \pi_{c} + \phi_{2}^{\text{T}} \pi_{d} \\ &s.t.\quad G_{c} \pi_{c} + G_{d} \pi_{d} \le S + Fx(t) \\&\phi_{1}^{\text{T}} \pi_{c} + \phi_{2}^{\text{T}} \pi_{d} \le \hat{J}(x(t))^{i} \\ &\pi_{d} \ne \bar{\pi }_{d} \\&x \in {\text{CR}}^{i} \end{aligned} $$
(A.4)

The integer solution,\( \pi_{d} = \bar{\pi }_{d}^{1} , \) and the corresponding CRs, obtained from the solution of (A.4), are then recycled back to the multi-parametric LP subproblem—to obtain another set of parametric profiles. Note that the integer cut, \( \pi_{d} \ne \bar{\pi }_{d} , \) and the parametric cut, \( \phi_{1}^{\text{T}} \pi_{c} + \phi_{2}^{\text{T}} \pi_{d} \le \hat{J}( {x( t )} )^{i} , \) are accumulated at every iteration.

If there is no feasible solution to the MILP subproblem (A.4) in a CRi, that region is excluded from further consideration and the current upper bound in that region represents the final solution.

The set of parametric solutions corresponding to an integer solution, \( \pi_{d} = \bar{\pi }_{d} , \) which represents the current upper bound are then compared to the parametric solutions corresponding to another integer solution, \( \pi_{d} = \bar{\pi }_{d}^{1} , \) in the corresponding CRs in order to obtain the lower of the two parametric solutions and update the upper bound. This is achieved by using a procedure presented by Acevedo and Pistikopoulos [1]. Based upon the above theoretical developments, the steps of the algorithm are stated in Table 2.

Table 2 Solution Steps of the mp-MILP Algorithm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dua, P., Doyle, F.J. & Pistikopoulos, E.N. Multi-objective blood glucose control for type 1 diabetes. Med Biol Eng Comput 47, 343–352 (2009). https://doi.org/10.1007/s11517-009-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0453-0

Keywords

Navigation