Skip to main content
Log in

Normal and osteoarthritic hip joint mechanical behaviour: a comparison study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The assessment of contact areas within the hip joint during activities of daily living is of critical importance to understand why degeneration mechanisms are sometimes initiated. A generic finite element model is developed and constrained with experimental personalized conditions to locate contact areas and determine pressure distribution, both during walking and stair climbing. Bony structures are positioned in relation to each other by using experimental kinematical data. Implemented loading conditions are computed from an inverse dynamic approach coupled with an optimization method. The mechanical behaviour of a healthy hip joint is first simulated. This model is then used as a reference for the evaluation of a pathological mechanical behaviour. Thus, experimental data are collected for a patient presenting a coxarthrosis. The comparison of the pathological and normal behaviours emphasizes that the contact area swept within the osteoarthritic hip joint is limited both during walking and stair climbing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adam C, Eckstein F, Milz S, Putz R (1998) The distribution of cartilage thickness within the joints of the lower limb of elderly individuals. J Anat 193:203–214. doi:10.1046/j.1469-7580.1998.19320203.x

    Article  Google Scholar 

  2. Adams D, Swanson S (1985) Direct measurement of local pressures in the cadaveric human hip joint during simulated level walking. Ann Rheum Dis 44:658–666. doi:10.1136/ard.44.10.658

    Article  Google Scholar 

  3. Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123:381–390. doi:10.1115/1.1392310

    Article  Google Scholar 

  4. Anderson FC, Pandy MG (2003) Individual muscle contributions to support in normal walking. Gait Posture 17:159–169. doi:10.1016/S0966-6362(02)00073-5

    Article  Google Scholar 

  5. Bachtar F, Chen X, Hisada T (2006) Finite element contact analysis of the hip joint. Med Biol Eng Comput 44:643–651. doi:10.1007/s11517-006-0074-9

    Article  Google Scholar 

  6. Beillas P, Papaioannou G, Tashman S, Yang KH (2004) A new method to investigate in vivo knee behaviour using a finite element model of the lower limb. J Biomech 37:1019–1030. doi:10.1016/j.jbiomech.2003.11.022

    Article  Google Scholar 

  7. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running measured in two patients. J Biomech 26:969–990. doi:10.1016/0021-9290(93)90058-M

    Article  Google Scholar 

  8. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871. doi:10.1016/S0021-9290(01)00040-9

    Article  Google Scholar 

  9. Bissacotti JF, Ritter MA, Faris PM, Keating EM, Cates HE (1994) A new radiographic evaluation of primary osteoarthritis. Orthopaedics 17:927–930

    Google Scholar 

  10. Brand RA, Pedersen DR, Friederich JA (1986) The sensitivity of muscle prediction to charges in physiologic cross-sectional area. J Biomech 19:589–596. doi:10.1016/0021-9290(86)90164-8

    Article  Google Scholar 

  11. Büchler P, Ramaniraka N, Rakotomanana L, Iannotti J, Farron A (2002) A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clin Biomech (Bristol, Avon) 17:630–639. doi:10.1016/S0268-0033(02)00106-7

    Article  Google Scholar 

  12. Carter DM, Wong M (2003) Modelling cartilage mechanobiology. Philos Trans R Soc Lond B Biol Sci 358:1461–1471. doi:10.1098/rstb.2003.1346

    Article  Google Scholar 

  13. Dalstra M, Huiskes R, Odgaard A, van Erning L (1993) Mechanical and textural properties of pelvic trabecular bone. J Biomech 26:523–535. doi:10.1016/0021-9290(93)90014-6

    Article  Google Scholar 

  14. Doriot N, Cheze L (2004) A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach. IEEE Trans Biomed Eng 51:21–27. doi:10.1109/TBME.2003.820357

    Article  Google Scholar 

  15. Dostal W, Andrews J (1981) A three-dimensional biomechanics model of hip musculature. J Biomech 14:803–812. doi:10.1016/0021-9290(81)90036-1

    Article  Google Scholar 

  16. Eckstein F, von Eisenhart R, Rothe R, Landgraf J, Adam C, Loehe F, Müller-Gerbl M, Putz R (1997) Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint. Acta Anat (Basel) 158:192–204. doi:10.1159/000147930

    Article  Google Scholar 

  17. Ferguson SJ, Bryant JT, Ganz R, Ito K (2000) The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech 33:953–960. doi:10.1016/S0021-9290(00)00042-7

    Article  Google Scholar 

  18. Glitsch U, Baumann W (1997) The three-dimensional determination of internal loads in the lower extremity. J Biomech 30:1123–1131. doi:10.1016/S0021-9290(97)00089-4

    Article  Google Scholar 

  19. Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568

    Google Scholar 

  20. Heller MO, Gergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893. doi:10.1016/S0021-9290(01)00039-2

    Article  Google Scholar 

  21. Hodge W, Fijan R, Carlson R, Burgess R, Harris W, Mann R (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 83:2879–2883. doi:10.1073/pnas.83.9.2879

    Article  Google Scholar 

  22. Hodge WA, Carlson K, Fijan R, Burgess R, Riley P, Harris W, Mann R (1989) Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg 71:1378–1386

    Google Scholar 

  23. Hof AL, Helzinga H, Grimmius W, Halbertsma J (2005) Detection of non-standard EMG profiles in walking. Gait Posture 21:171–177. doi:10.1016/j.gaitpost.2004.01.015

    Article  Google Scholar 

  24. Hulet C, Hurwitz DE, Andriacchi TP, Galante JO, Vielpeau C (2000) Functional gait adaptation in patients with painful hip. Rev Chir Orthop Reparatrice Appar Mot 86:581–589

    Google Scholar 

  25. Kaku N, Tsumura H, Taira H, Sawatari T, Torisu T (2004) Biomechanical study of load transfer of the pubic ramus due to pelvic inclination after hip joint surgery using a three-dimensional finite element model. J Orthop Sci 9:264–269. doi:10.1007/s00776-004-0772-9

    Article  Google Scholar 

  26. Kurrat HJ, Oberländer W (1978) The thickness of the cartilage in the hip joint. J Anat 126:145–155

    Google Scholar 

  27. Mechlenburg I, Nyengaard JR, Gelineck J, Soballe K (2007) Cartilage thickness in the hip joint measured by MRI and stereology—a methodological study. Osteoarthritis Cartilage 15:366–371. doi:10.1016/j.joca.2006.10.005

    Article  Google Scholar 

  28. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102:73–84

    Google Scholar 

  29. Oberländer W (1977) The stress of the human hip joint. VII. The distribution of cartilage thickness in the acetabulum and its functional explanation. Anat Embryol (Berl) 150(2):141–153

    Article  Google Scholar 

  30. Oonishi H, Isha H, Hasegawa T (1983) Mechanical analysis of human pelvis and its application to the articular hip joint by means of three-dimensional finite element method. J Biomech 16:427–444. doi:10.1016/0021-9290(83)90075-1

    Article  Google Scholar 

  31. Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30:959–965. doi:10.1016/S0021-9290(97)00041-9

    Article  Google Scholar 

  32. Russell ME, Shivanna KH, Grosland NM, Pedersen DR (2006) Cartilage contact pressure elevation in dysplastic hips: a chronic overload model. J Orthop Surg Res 3:1–6

    Google Scholar 

  33. Stansfield BW, Nicol AC, Paul JP, Kelly IG, Graichen F, Bergmann G (2003) Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech 36:929–936. doi:10.1016/S0021-9290(03)00072-1

    Article  Google Scholar 

  34. von Eisenhart R, Adam C, Steinlechner M, Müller-Gerbl M, Eckstein F (1999) Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. J Orthop Res 17:532–539. doi:10.1002/jor.1100170411

    Article  Google Scholar 

  35. Wei HW, Sun SS, Jao SHE, Yeh CR, Cheng CK (2005) The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Med Eng Phys 27:295–304. doi:10.1016/j.medengphy.2004.12.008

    Article  Google Scholar 

  36. Woo SLY, Simon BR, Kuei SC, Akeson WH (1979) Quasi-linear viscoelastic properties of normal articular cartilage. J Biomech Eng 102:85–90

    Article  Google Scholar 

  37. Wu GS, Allard P, Kirtley C, Leardini A, Rosenbaum D et al (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35:543–548. doi:10.1016/S0021-9290(01)00222-6

    Article  Google Scholar 

  38. Yoshida H, Faust A, Wilckens J, Kitagawa M, Fetto J, Chao EYS (2006) Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J Biomech 39:1996–2004. doi:10.1016/j.jbiomech.2005.06.026

    Article  Google Scholar 

Download references

Acknowledgment

Authors express their sincere gratitude to the “Conseil Général de L’Allier” and “Lyon 1 Ingenierie” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pustoc’h.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustoc’h, A., Cheze, L. Normal and osteoarthritic hip joint mechanical behaviour: a comparison study. Med Biol Eng Comput 47, 375–383 (2009). https://doi.org/10.1007/s11517-009-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0457-9

Keywords

Navigation