Skip to main content
Log in

Telemetry system for slow wave measurement from the small bowel

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A telemetry capsule system was designed and implemented to measure the slow wave activity of the small bowel, which is an important parameter for the diagnosis of gastric diseases. The capsule amplified the slow wave signal from the intraluminal electrodes, and transmitted the digitally sampled data by means of a radio frequency transmitter. The implemented capsule (11 × 21 mm2) was smaller than a commercially available capsule endoscope, and it can remain active for more than 18 h. The feasibility of using this capsule was investigated by conducting in vitro experiments, and the average motility signals of the ileum, jejunum, and colon were measured as 6.1, 10.2, and 1.5 cycles per minute, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ANSI (1982) American National Standard for Safety Levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 300 GHz. ANSI C95.1-1982. Institute of Electrical and Electronics Engineers, Inc., New York

  2. Brzana RJ, Koch KL, Bingaman S (1998) Gastric myoelectrical activity in patients with gastric outlet obstruction and idiopathic gastroparesis. Am J Gastroenterol 93:1803–1809. doi:10.1111/j.1572-0241.1998.00524.x

    Article  Google Scholar 

  3. Buist ML, Cheng LK, Yassi R, Bradshaw LA, Richards W, Pullan AJ (2004) An anatomical model of the gastric system for producing bioelectric and biomagnetic fields. Physiol Meas 25:849–861. doi:10.1088/0967-3334/25/4/006

    Article  Google Scholar 

  4. Donck LV, Lammers WJEP, Moreaux B, Smets D, Voeten J, Vekemans J, Schuurkes JAJ, Coulie B (2006) Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings. Med Biol Eng Comput 44:170–178. doi:10.1007/s11517-005-0018-9

    Article  Google Scholar 

  5. Dorofeev GI, Fadeev NP, Uspenski VM, Shkurko VA (1977) Radioisotope study of the stomach as a method of functional evaluation of its mucosa. Sovetskaia Meditsina 3:31–38

    Google Scholar 

  6. Eisen GM (2006) The economics of PillCam. Gastrointest Endosc Clin N Am 16:337–345. doi:10.1016/j.giec.2006.03.006

    Article  Google Scholar 

  7. Garcia-Casado J, Martinez-de-Juan JL, Ponce JL (2005) Noninvasive measurement and analysis of intestinal myoelectrical activity using surface electrodes. IEEE Trans Biomed Eng 52:983–991. doi:10.1109/TBME.2005.846730

    Article  Google Scholar 

  8. Gasparyan SA, Shvyre SL, Zarubina TV (1997) Automated monitoring of myoelectrical activity of the small intestine in patients with peritonitis. Biomed Eng 31:144–147. doi:10.1007/BF02369061

    Article  Google Scholar 

  9. Glass P, Cheung E, Sitti M (2008) A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Trans Biomed Eng 55:2759–2767. doi:10.1109/TBME.2008.2002111

    Article  Google Scholar 

  10. IEEE (1992) IEEE Standard for Safety Levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE C95.1-1991. Institute of Electrical and Electronics Engineers, Inc., New York

  11. Kwak SI, Chang K, Yoon YJ (2006) Small spiral antenna for wideband capsule endoscope system. Electron Lett 42:1328–1329. doi:10.1049/el:20062074

    Article  Google Scholar 

  12. Lammers WJEP, Michiels B, Voeten J, Donck LV, Schuurkes JAJ (2008) Mapping slow waves and spikes in chronically instrumented conscious dogs: automated on-line electrogram analysis. Med Biol Eng Comput 46:121–129. doi:10.1007/s11517-007-0294-7

    Article  Google Scholar 

  13. Marzio L, Grossi L, Falcucci M, Ciccaglione AF, Malatesta MG, Lapenna D (2006) Increase of swallows before onset of phase iii of migrating motor complex in normal human subjects. Dig Dis Sci 41:522–527. doi:10.1007/BF02282332

    Article  Google Scholar 

  14. National Council of Radiation Protection and Measurements (NCRP) (1986) Biological effects and exposure criteria for radiofrequency electromagnetic fields. NCRP Report No. 86, National Council on Radiation Protection and Measurements, Bethesda, MD

  15. Richards WO, Bradshaw LA, Staton DJ, Garrard CL, Liu F, Buchanan S, Wikswo JP Jr (1996) Magnetoenterography (MENG): noninvasive measurement of bioelectric activity in human small intestine. Dig Dis Sci 41:2293–2301. doi:10.1007/BF02100117

    Article  Google Scholar 

  16. Schlageter V, Besse PA, Popovic RS, Kucera P (2001) Tracking system with five degrees of freedom using a 2D-array of hall sensors and a permanent magnet. Sens Actuators 92:37–42. doi:10.1016/S0924-4247(01)00537-4

    Article  Google Scholar 

  17. Schoofs N et al (2007) PillCam COLON capsule endoscopy compared with colonoscopy in detection of colon polyps and cancers: interim analysis of a prospective multicenter trial. Gastroenterology 132:2585–2586. doi:10.1053/j.gastro.2007.04.019

    Article  Google Scholar 

  18. Simonian HP, Panganamamula K, Chen JZ, Fisher RS, Parkman HP (2004) Multichannel electrogastrography (EGG) in symptomatic patients: a single center study. Am J Gastroenterol 99:478–485. doi:10.1111/j.1572-0241.2004.04103.x

    Article  Google Scholar 

  19. Smith TK, Oliver GR, Hennig GW, O’Shea DM, Berghe PV, Kang SH, Spencer NJ (2003) A smooth muscle tone-dependent stretch-activated migrating motor pattern in isolated guinea-pig distal colon. J Physiol 551:955–969. doi:10.1113/jphysiol.2003.049163

    Article  Google Scholar 

  20. Stanghellini V, Malagelada JR (1983) Gastric manometric abnormalities in patients with dyspeptic symptoms after fundoplication. GUT 24:790–797. doi:10.1136/GUT.24.9.790

    Article  Google Scholar 

  21. Swain P (2008) The future of wireless capsule endoscopy. World J Gastroenterol 14:4142–4145. doi:10.3748/wjg.14.4142

    Article  Google Scholar 

  22. Tadayoshi T, Akikazu F, Yutaka O, Fumiaki H (2005) Interstitial cell of Cajal: peristalsis and interstitial cell of Cajal, and similar cells to interstitial cell of Cajal. Microscopy 40:162–167

    Google Scholar 

  23. Thomson L, Robinson TL, Lee JCF, Farraway LA, Hughes MJG, Andrews DW, Huizinga JD (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4:848–851. doi:10.1038/nm0798-848

    Article  Google Scholar 

  24. Wang K, Yan G, Ma G, Ye D (2009) An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment. Ann Biomed Eng 37:210–221. doi:10.1007/s10439-008-9597-6

    Article  Google Scholar 

  25. Zhou M, Zhang H, Shaw R, Barne FS (1997) Real-time multichannel computerized electrogastrograph. IEEE Trans Biomed Eng 44:1228–1236. doi:10.1109/10.649994

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by Grand No. 10031779 from the Strategic Technology Development Program of Ministry of Knowledge Economy, and also by the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Anti-aging and Well-being Research Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, S.H., Cho, J.H. Telemetry system for slow wave measurement from the small bowel. Med Biol Eng Comput 48, 277–283 (2010). https://doi.org/10.1007/s11517-009-0567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0567-4

Keywords

Navigation