Skip to main content
Log in

Discrimination of left and right leg motor imagery for brain–computer interfaces

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This article reports on a study to identify electroencephalography (EEG) signals with potential to provide new BCI channels through mental motor imagery (MMI). Leg motion was assessed to see if left and right leg MMI could be discriminated in the EEG. The study also explored simultaneous observation of leg movement as a means to enhance MMI evoked EEG signals. The results demonstrate that MMI of the left and right leg produce a contralateral preponderance of EEG alpha band desynchronization, which can be spatially discriminated. This suggests that lower extremity MMI could provide signals for additional BCI channels. The study also shows that movement imitation enhances alpha band desynchronization during MMI, and might provide a useful aid in the identification and training of BCI signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allison T, McCarthy G, Luby M, Puce A, Spencer DD (1996) Localization of functional regions of human mesial cortex by somatosensory evoked potential recording and by cortical stimulation. Electroenceph Clin Neurophysiol 100:126–140

    Article  Google Scholar 

  2. Barlow JS (1993) The electroencephalogram: its patterns and origins. MIT Press, Cambridge, MA

    Google Scholar 

  3. Bear M, Bear MF, Connors BW, Paradiso MA (2005) Neuroscience: exploring the brain, 2nd edn. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  4. Boord P, Barriskill A, Craig A, Nguyen H (2004) Brain computer interface-FES integration: towards a hands-free neuroprosthesis command system. Neuromodulation 7:267–276

    Article  Google Scholar 

  5. Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (2002) Mapping motor representations with positron emission tomography. Nature 371:600–602

    Article  Google Scholar 

  6. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  Google Scholar 

  7. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611

    Google Scholar 

  8. Grafton ST, Fadiga L, Arbib MA, Rizzolatti G (1997) Premotor cortex activation during observation and naming of familiar tools. Neuroimage 6:231–236

    Article  Google Scholar 

  9. Hari R, Salmelin R, Makela JP, Salenius S, Helle M (1997) Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26:51–62

    Article  Google Scholar 

  10. Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065

    Article  Google Scholar 

  11. Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephal Clin Neurophysiol 39:526–530

    Article  Google Scholar 

  12. Hwang HJ, Kwon K, Im CH (2009) Neurofeedback-based motor imagery training for brain–computer interface (BCI). J Neuroscience Methods 179:150–156

    Article  Google Scholar 

  13. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    Article  Google Scholar 

  14. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiol 37:163–178

    Article  Google Scholar 

  15. Klem GH, Luders HO, Jasper HH, Elger C (1999) The ten–twenty electrode system of the International Federation. Electroenceph Clin Neurophysiol S52:3–6

    Google Scholar 

  16. Krausz G, Scherer R, Korisek G, Pfurtscheller G (2003) Critical decision-speed and information transfer in the “Graz Brain–Computer Interface”. Appl Psychophysiol Biofeed 28:233–240

    Article  Google Scholar 

  17. Lauer RT, Peckham PH, Kilgore KL (1999) EEG-based control of a hand grasp neuroprosthesis. Neuroreport 10:1767–1771

    Article  Google Scholar 

  18. Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382:169–174

    Article  Google Scholar 

  19. Neuper C, Pfurtscheller G (1996) Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neurosci Lett 216:17–20

    Article  Google Scholar 

  20. Neuper C, Pfurtscheller G (1999) Motor imagery and ERD. In G. Pfurtscheller & F. H. Lopes da Silva (Eds.), Event-Related Desynchronization, Handbook of Electroenceph. and Clin. Neurophysiol., rev. ed., vol. 6: 303-325. Amsterdam, The Netherlands: Elsevier

  21. Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G (2009) Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clin Neurophysiol 120:239–247

    Article  Google Scholar 

  22. Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci USA 97:913–918

    Article  Google Scholar 

  23. Obermaier B, Neuper C, Guger C, Pfurtscheller G (2001) Information transfer rate in a five-classes brain–computer interface. IEEE Trans Neural Sys Rehab Eng 9:283–288

    Article  Google Scholar 

  24. Obermaier B, Muller GR, Pfurtscheller G (2003) “Virtual keyboard” controlled by spontaneous EEG activity. IEEE Trans Neural Sys Rehab Eng 11:422–426

    Article  Google Scholar 

  25. Pfurtscheller G, Lopes da Silva FH (2004) Event-related desynchronization. Elsevier, Amsterdam

    Google Scholar 

  26. Pfurtscheller G, Neuper C, Andrew C, Edlinger G (1997) Foot and hand area mu rhythms. Int J Psychophysiol 26:121–135

    Article  Google Scholar 

  27. Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroenceph Clin Neurophysiol 103:642–651

    Article  Google Scholar 

  28. Pfurtscheller G, Pichler-Zalaudek K, Neuper C (1999) ERD and ERS in voluntary movement of different limbs. In G. Pfurtscheller & F. H. Lopes da Silva (Eds.), Event-Related Desynchronization, Handbook of Electroenceph. and Clin. Neurophysiol., rev. ed., vol. 6: 245-268. Amsterdam, The Netherlands: Elsevier

  29. Pfurtscheller G, Neuper C, Krausz G (2000) Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol 111:1873–1879

    Article  Google Scholar 

  30. Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292:211–214

    Article  Google Scholar 

  31. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141

    Article  Google Scholar 

  32. Scherer R, Muller GR, Neuper C, Graimann B, Pfurtscheller G (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Bio-Med Eng 51:979–984

    Article  Google Scholar 

  33. Siddall PJ, Taylor DA, McClelland JM, Rutkowski SB, Cousins MJ (1999) Pain report and the relationship of pain to physical factors in the first 6 months following spinal cord injury. Pain 81:187–197

    Article  Google Scholar 

  34. Tran Y, Craig A, Boord P, Craig D (2004) Using independent component analysis to remove artifact from electroencephalographic measured during stuttered speech. Med Biol Eng Comput 42:627–633

    Article  Google Scholar 

  35. van Burik M, Edlinger G, Pfurtscheller G (1999) Spatial mapping of ERD/ERS. In G. Pfurtscheller & F. H. Lopes da Silva (Eds.), Event-Related Desynchronization, in Handbook of Electroencephalography and Clinical Neurophysiology; rev. ser. v.6: 107-118. Elsevier Science

  36. Wolpaw JR, McFarland DJ (1994) Multichannel EEG-based brain–computer communication. Electroenceph Clin Neurophysiol 90:444–449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Boord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boord, P., Craig, A., Tran, Y. et al. Discrimination of left and right leg motor imagery for brain–computer interfaces. Med Biol Eng Comput 48, 343–350 (2010). https://doi.org/10.1007/s11517-010-0579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0579-0

Keywords

Navigation