Skip to main content

Advertisement

Log in

Influence of graft quality and marginal bone loss on implants placed in maxillary grafted sinus: a finite element study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the biomechanical effects of graft stiffness and progression of marginal bone loss (MBL) in the bone surrounding an implant placed in a maxillary grafted sinus based on the finite element method. The simulating model of graft stiffness as well as depth of MBL was varied to simulate nine different clinical scenarios. The results showed that the high-level strain distributions in peri-implant tissue increased with the increase in MBL depth when the stiffness of the graft was less than that of the cancellous bone (less stiffness graft models). The strain energy density (SED) value showed that a slight MBL depth (1.3 mm) with medium stiffness of grafted bone can reach the optimal load sharing due to the exhibited similar values of SED in the crestal cortical, cancellous, and grafted bone. With progression of MBL and the decrease in graft quality, maximal displacement of the implant increased considerably. Our results demonstrated that the effects of the two investigated factors (progression of MBL and graft stiffness) on the biomechanical adaptation are likely to be interrelated. The results also reveal that for clinical situations with poor grafted bone quality and progression of MBL, it is critical to consider implant stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acka K, Cehreli MC (2006) Biomechanical consequence of progressive marginal bone loss around oral implants: a finite element stress analysis. Med Bio Eng Comput 44:527–535

    Article  Google Scholar 

  2. Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Bio Eng Comput 46:283–298

    Article  CAS  Google Scholar 

  3. Carter DR, Spengler DM (1978) Mechanical properties and composition of cortical bone. Clin Orthop Relat Res 135:192–217

    PubMed  Google Scholar 

  4. Cehreli MC, Comert A, Akkocaoglu M, Tekdemir I, Akca K (2006) Towards the limit of quantifying low-amplitude strains on bone and in coagulum around immediately loaded oral implants in extraction sockets. Med Bio Eng Comput 44:86–94

    Article  Google Scholar 

  5. Cehreli MC, Akkocaoglu M, Comert A, Tekdemir I, Akca K (2007) Bone strains around apically free versus grafted implants in the posterior maxilla of human cadavers. Med Bio Eng Comput 45:395–402

    Article  Google Scholar 

  6. Fanuscu MI, Vu HV, Poncelet B (2004) Implant biomechanics in grafted sinus: a finite element analysis. J Oral Implantol 30:59–68

    Article  PubMed  Google Scholar 

  7. Geng JP, Tan KBC, Liu GR (2001) Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 85:585–598

    Article  PubMed  CAS  Google Scholar 

  8. Herzberg R, Dolev E, Schwartz D (2006) Implant marginal bone loss in maxillary sinus grafts. Int J Oral Maxillofac Implants 21:103–110

    PubMed  Google Scholar 

  9. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F (1998) Evaluated parameters of osseointegrated dental implants using finite element analysis—a two-dimensional comparative study examining the effects of implant diameter, implant shape and load direction. J Oral Implantol 24:80–88

    Article  PubMed  CAS  Google Scholar 

  10. Junc YC, Han CH, Lee KW (1996) A 1-year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implants 11:811–818

    Google Scholar 

  11. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O (2004) Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res 15:401–412

    Article  PubMed  Google Scholar 

  12. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O (2005) Influence of marginal bone resorption on stress around an implant—a three-dimensional finite element analysis. J Oral Rehabil 32:279–286

    Article  PubMed  CAS  Google Scholar 

  13. Lagravere MO, Fang Y, Carey J, Toogood RW, Packota GV, Major PW (2006) Density conversion factor determining using a cone-beam computed tomography unit New Tom QR-DVT 9000. Dentomaxillofac Radiol 35:407–409

    Article  PubMed  CAS  Google Scholar 

  14. Largravere MO, Carey J, Ben-Zvi M, Packota GV, Major PW (2008) Effect of object on the density measurement and Hounsfield conversion in a New Tom 3G cone beam computed tomography unit. Dentomaxillofac Radiol 37(6):305–308

    Article  Google Scholar 

  15. Lee S, Gantes B, Riggs M, Crigger M (2007) Bone density assessments of dental implant sites: 3. Bone quality evaluation during osteotomy and implant placement. Int J Oral Maxillofac Implants 22(2):208–212

    PubMed  Google Scholar 

  16. Lekholm U, Gunne J, Henry P, Higuchi K, Linden U, Bergstrom C, van Steenberghe D (1999) Survival of the Branemark implant in partially edentulous jaws: a 10-year prospective multicenter study. Int J Oral Maxillofac Implants 14:639–645

    PubMed  CAS  Google Scholar 

  17. Maiorana C, Sigurta D, Mirandola A et al (2005) Bone resorption around dental implants placed in grafted sinuses: clinical and radiologic follow-up after up to 4 years. Int J Oral Maxillofac Implants 20:261–266

    PubMed  Google Scholar 

  18. Mellal A, Wiskott HWA, Botsis J et al (2004) Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 15:239–248

    Article  PubMed  CAS  Google Scholar 

  19. Mericske-Stern R, Aerni D, Buser D, Geering AH (2001) Long-term evaluation of non submerged hollow cylinder implants. Clinical and radiographic results. Clin Oral Implant Res 12:252–259

    Article  Google Scholar 

  20. Moy PK, Lundgren S, Holmes RE (1993) Maxillary sinus augmentation: histomorphometric analysis of graft materials for maxillary sinus floor augmentation. J Oral Maxillofac Surg 51:857–862

    Article  PubMed  CAS  Google Scholar 

  21. Oilo G, Gjerdet NR (1983) Dental casting alloys with a low content of noble metals: physical properties. Acta Odontol Scand 41:111–116

    PubMed  CAS  Google Scholar 

  22. Papa F, Cortese A, Maltarello MC et al (2005) Outcome of 50 consecutive sinus lift operations. Br J Oral Maxillofac Surg 43:309–313

    Article  PubMed  Google Scholar 

  23. Prasit A, Joseph C, Bernard G, Eloy S, Matt R, Ivan D, Jason MY, Max C (2005) Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants 20:416–424

    Google Scholar 

  24. Rangert B, Krogh PHJ, Langer B, Van Roekel N (1995) Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 10:326–344

    PubMed  CAS  Google Scholar 

  25. Rues S, Lenz J, Schierle HP et al (2004) Simulation of the sinus floor elevation. Proc Appl Math Mech 4:368–369

    Article  Google Scholar 

  26. Shulman LB, Jensen OT, Block MS, Iacono VJ (1998) A consensus conference on the sinus graft. Inter J Oral Maxillofac Implants 13(Suppl):5–6

    Google Scholar 

  27. Singh GD (2008) Digital diagnostic: three-dimensional modeling. Br J Oral Maxillofac Surg 46:22–26

    Article  PubMed  CAS  Google Scholar 

  28. Spector M (1999) Basic principle of tissue engineering. In: Lynch SE, Genco RJ, Marx RE (eds) Tissue engineering: applications in maxillofacial surgery and periodontics. Quintessence, Chicago, IL

    Google Scholar 

  29. Steineman S (1996) The properties of titanium. In: Schroeder A, Sutter F, Buser D, Krekeler G (eds) Oral implantology. Basics, ITI hollow cylinder system, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  30. Tepper G, Haas R, Zechner W et al (2003) Three-dimensional finite analysis of implant stability in the atrophic posterior maxilla. Clin Oral Implants Res 13:657–665

    Article  Google Scholar 

  31. Turkyilmaz I, McGlumphy EA (2008) Influence of bone density on implant stability parameters and implant success: a retrospective clinical study. BMC Oral Health 8:32. doi:10.1186/1472-6831-8-32

    Article  PubMed  Google Scholar 

  32. Weber HP, Crohin CC, Fiorellini JP (2000) A 5-year prospective clinical and radiolographic study of non-submerged dental implant. Clin Oral Implants Res 11:144–153

    PubMed  CAS  Google Scholar 

  33. Wiskott HWA, Belser UC (1999) Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 10:429–444

    Article  PubMed  CAS  Google Scholar 

  34. Xu H, Shimizu Y, Ooya K (2005) Histomorphometric study of the stability of newly formed bone after elevation of the floor of the maxillary sinus. Br J Oral Maxillofac Surg 43:493–499

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the National Metal and Materials Technology Center (MTEC), the Advanced Dental Technology Center (ADTEC), and the Faculty of Dentistry, Thammasat University, Thailand, for their support and allowing us the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriskrai Sitthiseripratip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inglam, S., Suebnukarn, S., Tharanon, W. et al. Influence of graft quality and marginal bone loss on implants placed in maxillary grafted sinus: a finite element study. Med Biol Eng Comput 48, 681–689 (2010). https://doi.org/10.1007/s11517-010-0584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0584-3

Keywords

Navigation