Skip to main content

Advertisement

Log in

Sensorimotor cortical response during motion reflecting audiovisual stimulation: evidence from fractal EEG analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Sensorimotor activity in response to motion reflecting audiovisual titillation is studied in this article. EEG recordings, and especially the Mu-rhythm over the sensorimotor cortex (C3, CZ, and C4 electrodes), were acquired and explored. An experiment was designed to provide auditory (Modest Mussorgsky’s “Promenade” theme) and visual (synchronized human figure walking) stimuli to advanced music students (AMS) and non-musicians (NM) as a control subject group. EEG signals were analyzed using fractal dimension (FD) estimation (Higuchi’s, Katz’s and Petrosian’s algorithms) and statistical methods. Experimental results from the midline electrode (CZ) based on the Higuchi method showed significant differences between the AMS and the NM groups, with the former displaying substantial sensorimotor response during auditory stimulation and stronger correlation with the acoustic stimulus than the latter. This observation was linked to mirror neuron system activity, a neurological mechanism that allows trained musicians to detect action-related meanings underlying the structural patterns in musical excerpts. Contrarily, the response of AMS and NM converged during audiovisual stimulation due to the dominant presence of human-like motion in the visual stimulus. These findings shed light upon music perception aspects, exhibiting the potential of FD to respond to different states of cortical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Accardo A, Affinito M, Carrozzi M, Bouquet F (1997) Use of fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77:339–350. doi:10.1007/s004220050394

    Article  CAS  PubMed  Google Scholar 

  2. Altschuler EL, Vankov A, Wang V, Ramachandran VS, Pineda JA (1997) Person see, person do: human cortical electrophysiological correlates of monkey see monkey do cells. Soc Neurosci Abst 23(2):1848

    Google Scholar 

  3. Bangert M, Peschel T, Schlaug G, Rotte M, Drescher D, Hinrichs H, Heinze HJ, Altenmuller E (2006) Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30:917–926. doi:10.1016/j.neuroimage.2005.10.044

    Article  PubMed  Google Scholar 

  4. Baumgartner T, Esslen M, Jäncke L (2006) From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int J Psychophysiol 60:34–43. doi:10.1016/j.ijpsycho.2005.04.007

    Article  PubMed  Google Scholar 

  5. Bengtsson S, Ullen F, Ehrsson H, Hashimoto T, Kito T, Naito E, Forssberg H, Sadato N (2009) Listening to rhythms activates motor and premotor cortices. Cortex 45:62–71. doi:10.1016/j.cortex.2008.07.002

    Article  PubMed  Google Scholar 

  6. Bhattacharya J, Petsche H, Pereda E (2001) Interdependencies in the spontaneous EEG while listening to music. Int J Psychophysiol 42:287–301. doi:10.1016/S0167-8760(01)00153-2

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Penhune V, Zattore R (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex 18(12):2844–2845. doi:10.1093/cercor/bhn042

    Article  PubMed  Google Scholar 

  8. Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci 11:1839–1842. doi:10.1046/j.1460-9568.1999.00598.x

    Article  CAS  PubMed  Google Scholar 

  9. Conte E, Khrennikov A, Federici A, Zbilut J (2008) Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brainwaves: a new method based on fractal variance function and random matrix theory: a link with El-Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in the brain. Chaos Soliton Fract. doi:10.1016/j.chaos.2008.10.016

  10. Corriveau K, Goswami U (2009) Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat. Cortex 45:119–130. doi:10.1016/j.cortex.2007.09.008

    Article  PubMed  Google Scholar 

  11. Dawson G, Watling R (2009) Interventions to facilitate auditory, visual, and motor integration in autism: a review of the evidence. J Autism Dev Disord 30(5):415–421. doi:10.1023/A:1005547422749

    Article  Google Scholar 

  12. Esteller R, Vachtsevanos G, Echauz J, Litt B (2001) A comparison of waveform fractal dimension algorithms. IEEE Trans Circuits I 48(2):177–183. doi:10.1109/81.904882

    Article  Google Scholar 

  13. Fogassi L, Ferrari PF (2007) Mirror neurons and the evolution of embodied language. Curr Dir Psychol Sci 16(3):136–141. doi:10.1111/j.1467-8721.2007.00491.x

    Article  Google Scholar 

  14. Ford M, Wagenaar R, Newell K (2007) The effects of auditory rhythms and instruction on walking patterns in individuals post stroke. Gait Posture 26(1):150–155. doi:10.1016/j.gaitpost.2006.08.007

    Article  PubMed  Google Scholar 

  15. Galati G, Commiteri G, Spitoni G, Aprile T, Di Russo F, Pitzalis S, Pizzamiglio L (2008) A selective representation of the meaning of actions in the auditory mirror system. Neuroimage 40(3):1274–1286. doi:10.1016/j.neuroimage.2007.12.044

    Article  PubMed  Google Scholar 

  16. Gentilucci M, Corballis M (2006) From manual gesture to speech: a gradual transition. Neurosci Biobehav R 30:949–960. doi:10.1016/j.neubiorev.2006.02.004

    Article  Google Scholar 

  17. Grahn J, Brett M (2007) Rhythm and beat perception in motor areas of the brain. Cogn Neurosci 19(5):893–906. doi:10.1162/jocn.2007.19.5.893

    Article  Google Scholar 

  18. Grahn J, Brett M (2009) Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex 45:54–61. doi:10.1016/j.cortex.2008.01.005

    Article  PubMed  Google Scholar 

  19. Hari R (2006) Action-perception and the cortical mu-rhythm. Prog Brain Res 159:253–260. doi:10.1016/S0079-6123(06)59017-X

    Article  PubMed  Google Scholar 

  20. Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31:277–283. doi:10.1016/0167-2789(88)90081-4

    Article  Google Scholar 

  21. Katz M (1988) Fractals and the analysis of waveforms. Comput Biol Med 18(3):145–156. doi:10.1016/0010-4825(88)90041-8

    Article  CAS  PubMed  Google Scholar 

  22. Koelsch S, Siebel W (2005) Towards a neural basis of music perception. Trends Cogn Sci 9(12):578–584. doi:10.1016/j.tics.2005.10.001

    Article  PubMed  Google Scholar 

  23. Kohler E, Keysers C, Umiltà M, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297(5582):846–848. doi:10.1126/science.1070311

    Article  CAS  PubMed  Google Scholar 

  24. Kulish V, Sourin A, Sourina O (2006) Human electroencephalograms seen as fractal time series: mathematical analysis and visualization. Comput Biol Med 36:291–302. doi:10.1016/j.compbiomed.2004.12.003

    Article  PubMed  Google Scholar 

  25. Lahav A, Saltzman E, Schlaug G (2007) Action representation of sound: audiomotor recognition network while listening to newly acquired sounds. J Neurosci 27(2):308–314. doi:10.1523/JNEUROSCI.4822-06.2007

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Deng Z, Zhang J (2009) Function of EEG temporal complexity analysis in neural activities measurement. Lect Notes Comput Sci 5551:209–218. doi:10.1007/978-3-642-01507-6

    Article  Google Scholar 

  27. Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from membranes to networks. Electroen Clin Neuro 79:81–93. doi:10.1016/0013-4694(91)90044-5

    Article  CAS  Google Scholar 

  28. Molnar-Szakacs I, Overy K (2006) Music and mirror neurons: from motion to e’motion. Soc Cogn Affect Neur I:234–241. doi:10.1093/scan/nsl029

    Google Scholar 

  29. Muthukumaraswamy S, Johnson B, McNair N (2004) Mu-rhythm modulation during observation of an object-directed grasp. Cognitive Brain Res 19(2):195–201. doi:10.1016/j.cogbrainres.2003.12.001

    Article  Google Scholar 

  30. Oberman LM, Hubbard EM, McCLeery JP, Altschuler EL, Ramachandran VS, Pineda JA (2005) EEG evidence from mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Res 24(2):190–198. doi:10.1016/j.cogbrainres.2005.01.014

    Article  Google Scholar 

  31. Overy K, Molnar-Szakacs I (2009) Being together in time: musical experience and the mirror neuron system. Music Perception 26(5):489–504. doi:10.1525/MP.2009.26.5.489

    Article  Google Scholar 

  32. Pacchetti C, Mancini F, Aglieri R, Fundaro C, Martignoni E, Nappi G (2000) Active music therapy in Parkinson’s disease: an integrative method for motor and emotional rehabilitation. Psychosom Med 62:386–393

    CAS  PubMed  Google Scholar 

  33. Paramanathan P, Uthayakumar R (2008) Application of fractal theory in analysis of human electroencephalographic signals. Comput Biol Med 38:372–378. doi:10.1016/j.compbiomed.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  34. Petrosian A (1995) Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Comp Med Sys 212–217. doi:10.1109/CBMS.1995.465426

  35. Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH (2006) Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31:153–159. doi:10.1016/j.neuroimage.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  36. Phothisonathai M, Nakagawa M (2007) Fractal-based EEG data analysis of body parts movement imagery tasks. J Physiol Sci 57(4):217–226. doi:10.2170/physiolsci.RP006307

    Article  Google Scholar 

  37. Phothisonathai M, Nakagawa M (2008) EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface. IEICE Trans Inf Syst E91-D(1):44–53. doi:10.1093/ietisy/e91-d.1.44

    Article  Google Scholar 

  38. Pineda J (2005) The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Rev 50:57–68. doi:10.1016/j.brainresrev.2005.04.005

    Article  PubMed  Google Scholar 

  39. Pineda J (2008) Sensorimotor cortex as a critical component of an ‘extended’ mirror neuron system: does it solve the development, correspondence and control problems in mirroring? Behav Brain Funct 4:47. doi:10.1186/1744-9081-4-47

    Article  PubMed  Google Scholar 

  40. Pineda J, Allison B, Vankov A (2000) The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP’s): toward a brain–computer interface (BCI). IEEE Trans Rehabil Eng 8:219–222. doi:10.1109/86.847822

    Article  CAS  PubMed  Google Scholar 

  41. Prassas S, Thaut M, McIntosh G, Rice R (1997) Effect of auditory rhythmic cuing on gait kinematic parameters of stroke patients. Gait Posture 6(3):218–223. doi:10.1016/S0966-6362(97)00010-6

    Article  Google Scholar 

  42. Rizzolatti G, Graighero L (2004) The mirror neuron system. Ann Rev Neurosci 27:169–192. doi:10.1016/S0966-6362(97)00010-6

    Article  CAS  PubMed  Google Scholar 

  43. Rizzolatti G, Fogassi L, Gallese V (2006) Mirrors in the mind. Sci Am 295(5):30–37

    Article  Google Scholar 

  44. Russ M (1992) Mussorgsky: pictures at an exhibition. Cambridge University Press, Cambridge. doi:10.2277/0521386071

    Google Scholar 

  45. Spasic S, Kalauzi A, Martac L, Culic M (2006) Fractal analysis of rat brain activity after injury. Med Biol Eng Comput 43(3):345–348. doi:10.1007/BF02345811

    Article  Google Scholar 

  46. Styns F, van Noorden L, Moelants D, Leman M (2007) Walking on music. Hum Mov Sci 26:769–785. doi:10.1016/j.humov.2007.07.007

    Article  PubMed  Google Scholar 

  47. Thaut M (2003) Neural basis of rhythmic timing networks in the human brain. Ann N Y Acad Sci 999:364–373. doi:10.1196/annals.1284.044

    Article  PubMed  Google Scholar 

  48. Thomson J, Goswami U (2008) Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. J Physiol Paris 102:120–129. doi:10.1016/j.jphysparis.2008.03.007

    Article  PubMed  Google Scholar 

  49. Thuraisingham R, Tran Y, Boord P, Graig A (2007) Analysis of eyes open, eye closed EEG signals using second-order difference plot. Med Biol Eng Comput 45(12):1243–1249. doi:10.1007/s11517-007-0268-9

    Article  PubMed  Google Scholar 

  50. Ulloa E, Pineda J (2007) Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behav Brain Res 183(2):188–194. doi:10.1016/j.bbr.2007.06.007

    Article  PubMed  Google Scholar 

  51. Williams JHG, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism. Neurosci Biobehav R 25(4):287–295. doi:10.1016/S0149-7634(01)00014-8

    Article  CAS  Google Scholar 

  52. Zattore R, Chen J, Penhune V (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558. doi:10.1038/nrn2152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hadjileontiadis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjidimitriou, S., Zacharakis, A., Doulgeris, P. et al. Sensorimotor cortical response during motion reflecting audiovisual stimulation: evidence from fractal EEG analysis. Med Biol Eng Comput 48, 561–572 (2010). https://doi.org/10.1007/s11517-010-0606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0606-1

Keywords

Navigation