Skip to main content

Advertisement

Log in

Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Aluminium interferes with a variety of cellular metabolic processes in the mammalian nervous system and its intake might increase a risk of developing Alzheimer’s disease (AD). While cerebral involvement even at the early stages of intoxication is well known, the role of cerebellum is underestimated. Our aim was to investigate cerebral and cerebellar electrocortical activity in adult male rats exposed to chronic aluminium treatment by nonlinear analytic tools. The adult rats in an aluminium-treated group were injected by AlCl3, intraperitoneally (2 mg Al/kg, daily for 4 weeks). Fractal analysis of brain activity was performed off-line using Higuchi’s algorithm. The average fractal dimension of electrocortical activity in aluminium-treated animals was lower than the average fractal dimension of electrocortical activity in the control rats, at cerebral but not at cerebellar level. The changes in the stationary and nonlinear properties of time series were more expressed in cerebral electrocortical activity than in cerebellar activity. This can be useful for developing effective diagnostic and therapeutic strategies in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Accardo A, Affinito M, Carozzi M, Bouquiet F (1997) Use of fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77:339–350

    Article  CAS  PubMed  Google Scholar 

  2. Adler G, Brassen S, Jajcevic A (2003) EEG coherence in Alzheimer’s dementia. J Neural Trans 110:1051–1058

    Article  CAS  Google Scholar 

  3. Baikun W, Dong M, Xiaomeng F, Chunmei J, Hongzhi H, Binjin C (2006) Study on a quantitative electroencephalography power spectrum typical of Chinese Han Alzheimer’s disease patients by using wavelet transforms. J Neural Eng 3:71–77

    Article  Google Scholar 

  4. Banakar Z, Nazardad S, Rakhshan M (1996) Chronic aluminium toxicity and its relation to Alzheimer disease in male rats. Toxicol Lett (Suppl. 1) 88: 60–61

    Google Scholar 

  5. Becaria A, Campbell A, Bondy SC (2002) Aluminum as a toxicant. Toxicol Ind Health 18:309–320

    Article  CAS  PubMed  Google Scholar 

  6. Bendat JS, Piersol AG, Random Data (2000) Analysis and measurement procedures, 3nd ed. Wiley-Interscience, New York, p. 594

  7. Besthorn C, Sattel H, Geiger-Kabisch C, Zerfass R, Forstl H (1995) Parameters of EEG dimensional complexity in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 95:84–89

    Article  CAS  PubMed  Google Scholar 

  8. Chau T, Chau D, Casas M, Berall G, Kenny DJ (2005) Investigating the stationarity of pediatric aspiration signals. IEEE Trans Neural Syst Rehab Eng 13:99–105

    Article  Google Scholar 

  9. Culic M, Martac Blanusa L, Grbic G, Spasic S, Jankovic B, Kalauzi A (2005) Spectral analysis of cerebellar activity after acute brain injury in anesthetized rats. Acta Neurobiol Exp 65:11–17

    Google Scholar 

  10. Culic M, Martac L, Grbic G, Kesic S, Spasic S, Lalosevic D, Sekulic S (2007) Fractal analysis of brain activity in the rat model of cognitive disfunction. In: Proceedings of poster sessions: neuroscience today: neuronal functional diversity and collective behaviors. Firenze, March 26–28, pp. 10–13

  11. Culic M, Martac L, Grbic G, Kesic S, Spasic S, Sekulic S, Lalosevic D, Capo I (2007) Aluminium toxicity in rat brain: electrophysiological, histological and behavioral evidence. In: Gantchev N (ed) From basic motor to functional recovery V. Sofia Publ House, Sofia, pp. 224–230

  12. Culic M, Kekovic G, Grbic G, Lj Martac, Sokovc M, Podgorac J, Sekulic S (2009) Wavelet and fractal analysis of rat brain activity in seizures evoked by camphor essential oil and 1,8-cineole. Gen Physiol Biophys (Special issue) 28:33–40

    Google Scholar 

  13. Daud MS, Yunus J (2005) Relative wavelet energy as a tool to select suitable wavelet for artifact removal in EEG. In: Proceeding of 1st conference on computers, communication, and signal processing, Kuala Lumpur

  14. Escudero J, Abásolo D, Hornero R, Espino P, López M (2006) Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol Meas 27:1091–1106

    Article  CAS  PubMed  Google Scholar 

  15. Exley C, (ed) (2001) Aluminium and Alzheimer’s disease. In: The science that describes the link. Elsevier Science, Amsterdam

  16. Garcia T, Ribes D, Colomina MT, Cabre M, Domingo H, Gomez M (2009) Evaluation of effects of protective role of melatonin on the behavioral effects of aluminium in a mouse model of Alzheimer’s disease. Toxicology 265:49–55

    Article  CAS  PubMed  Google Scholar 

  17. Golub MS, Keen CL (1999) Effects of dietary aluminium on pubertal mice. Neurotoxicol Teratol 21:595–602

    Article  CAS  PubMed  Google Scholar 

  18. Gómez C, Madiavilla A, Hornero R, Abásalo D, Fernández A (2009) Use of Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Med Eng Phys 31:306–313

    Article  PubMed  Google Scholar 

  19. Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31:277–283

    Article  Google Scholar 

  20. Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115:1490–1505

    Article  PubMed  Google Scholar 

  21. Jeong J, Chae JH, Kim SY, Han SH (2001) Nonlinear dynamic analysis of EEG in patients with Alzheimer’s disease and vascular dementia. J Clin Neurophysiol 18:58–67

    Article  CAS  PubMed  Google Scholar 

  22. Kwak YT (2006) Quantitative EEG findings in different stages of Alzheimer’s disease. J Clin Neurophysiol 23:457–462

    Article  Google Scholar 

  23. Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund LO, Dodge Y, Dierks T (2007) Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J Neurosci Methods 161:342–350

    Article  PubMed  Google Scholar 

  24. Lessard SC (2006) Signal processing of random physiological signals. Morgan & Claypool, USA

    Google Scholar 

  25. Lindau M, Jelic V, Johansson S-E, Andersen C, Wahlund L-O, Almkvist O (2003) Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord 15:106–114

    Article  CAS  PubMed  Google Scholar 

  26. Magosso E, Ursino M, Provini F, Montagna P (2007) Wavelet analysis of electroencephalographic and electro-oculographic changes during the sleep onset period. Conf Proc IEEE Eng Med Biol Soc 1:4006–4010

    Google Scholar 

  27. Martac L, Kesic S, Culic M, Grbic G, Spasic S, Sekulic S, Lalosevic D (2006) Effect of aluminium neurotoxicity on the rat brain electrocortical activity. Acta Physiol Pharmacol Serb 42:219–225

    Google Scholar 

  28. Martac L, Grbic G, Kekovic G, Podgorac J, Culic M, Sekulic S, Lalosevic D, Capo I (2010) Spectral changes of brain activity in offspring of rats exposed to aluminium during gestation and lactation. Arch Biol Sci 62

  29. Metin A (1997) Time-frequency and wavelets in biomedical signal processing. In: Fast algorithms for wavelet transform computation. IEEE Computer Society Press, pp 211–222

  30. Mizoroki T, Meshitsuka S, Maeda S, Murayama M, Sahara N, Takashima A (2007) Aluminium induces tau aggregation in vitro but not in vivo. J Alzheimer’s Dis 11:419–427

    CAS  Google Scholar 

  31. Nayak P, Chatterjee AK (2002) Response of regional brain glutamate transaminases of rat to aluminium in protein malnutrition. BMC Neurosci 3:12

    Article  PubMed  Google Scholar 

  32. Podgorac J, Sekulić S, Lalosević D, Čapo I, Grbić I, Martać L, Ćulić M (2008) Spectral characteristics of brain activity in off-springs whose mothers drank water solution of AlCl3. In: Abstract Book of the IV Congress of Serbian Society for Neuroscience, Kragujevac, pp. 372-373

  33. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology 23:761–774

    Article  CAS  PubMed  Google Scholar 

  34. Rosso OA, Blanco S, Rabinowicz A (2003) Wavelet analysis of generalized tonic-clonic epileptic seizures. Signal Process 83:1275–1289

    Article  Google Scholar 

  35. Shena Y, Olbricha E, Achermannb P, Meiera FP (2003) Dimensional complexity and spectral properties of the human sleep. EEG Clin Neurophysiol 114:199–209

    Google Scholar 

  36. Sińczuk-Walczak H, Matczak W, Raźniewska G, Szymczak M (2005) Neurological and neurophysiological examinations of workers occupationally exposed to aluminium. Medycina Pracy 56:9–17

    Google Scholar 

  37. Spasić S, Kalauzi A, Ćulić M, Grbić G, Martać L (2005) Estimation of parameter kmax in fractal analysis of rat brain activity. Ann NY Acad Sci 1048:427–429

    Article  PubMed  Google Scholar 

  38. Spasic S, Kalauzi A, Culic M, Grbic G, Martac L (2005) Fractal analysis of rat brain activity after injury. Med Biol Eng Comput 43:345–348

    Article  CAS  PubMed  Google Scholar 

  39. Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  40. Thuraisingham RA, Tran Y, Boord P, Craig A (2007) Analysis of eyes open, eye closed EEG signals using second-order difference plot. Med Biol Eng Comput 45:1243–1249

    Article  PubMed  Google Scholar 

  41. Verner K, Erich M, Colleen M, Vadim I (2001) Quantitative electroencephalography in Alzheimer’s disease: comparison with a control group, population norms and mental status. J Psychiatry Neurosci 26:106–116

    Google Scholar 

  42. Walton J, Tuniz C, Fink D, Jacobsen G, Wilcox DU (1995) Uptake of trace amounts of aluminum into the brain from drinking water. Neurotoxicology 16:187–190

    CAS  PubMed  Google Scholar 

  43. Woodruff-Pak DS, Agelan A, Del Valle L (2007) A rabbit model of Alzheimer’s disease. Valid at neuropathological, cognitive, and therapeutic levels. J Alzheimer’s Dis 11:371–383

    CAS  Google Scholar 

  44. Wu X, Jiang X, Marini AM, Lipsky RG (2005) Delineating and understanding cerebellarneuroprotective pathways: potential implication for protecting the cortex. Ann NY Acad Sci 1053:39–47

    Article  CAS  PubMed  Google Scholar 

  45. Yokel RA (2000) The toxicology of aluminum in the brain: a review. Neurotoxicology 21:813–828

    CAS  PubMed  Google Scholar 

  46. Yokel RA, MacNamara PJ (2001) Aluminium toxicokinetics: an updated microreview. Pharmacol Toxicol 88:157–167

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the Serbian Ministry of Science and Technological Development (Project Grant No. 143021). The kindness of Dr. S. Spasic, from the Institute for Multidisciplinary Studies in Belgrade for ceding us the software for FD calculation, is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Kekovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kekovic, G., Culic, M., Martac, L. et al. Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium. Med Biol Eng Comput 48, 671–679 (2010). https://doi.org/10.1007/s11517-010-0620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0620-3

Keywords

Navigation