Skip to main content

Advertisement

Log in

A muscle architecture model offering control over motor unit fiber density distributions

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a muscle architecture model able to account for the observed distributions of innervation ratios and fiber densities of different types of motor units in a muscle. A model algorithm is proposed and mathematically analyzed in order to obtain an inverse procedure that allows, by modification of input parameters, control over the output distributions of motor unit fiber densities. The model’s performance was tested with independent data from a glycogen depletion study of the medial gastrocnemius of the rat. Results show that the model accurately reproduces the observed physiological distributions of innervation ratios and fiber densities and their relationships. The reliability and accuracy of the new muscle architecture model developed here can provide more accurate models for the simulation of different electromyographic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akaboshi K, Masakado Y, Chino N (2000) Quantitative EMG and motor unit recruitment threshold using a concentric needle with quadrifilar electrode. Muscle Nerve 23:361–367

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong JB, Rose PK, Vanner S, Bakker GJ, Richmond FJ (1988) Compartmentalization of motor units in the cat neck muscle, biventer cervicis. J Neurophysiol 60:30–45

    CAS  PubMed  Google Scholar 

  3. Bodine SC, Garfinkel A, Roy RR, Edgerton VR (1988) Spatial distribution of motor unit fibers in the cat soleus and tibialis anterior muscles: local interactions. J Neurosci 8:2142–2152

    CAS  PubMed  Google Scholar 

  4. Bodine SC, Roy RR, Eldred E, Edgerton VR (1987) Maximal force as a function of anatomical features of motor unit in the cat tibialis anterior. J Neurophysiol 57:1730–1745

    CAS  PubMed  Google Scholar 

  5. Bodine-Fowler S, Garfinkel A, Roy RR, Edgerton VR (1990) Spatial distribution of muscle fibers within the territory of a motor unit. Muscle Nerve 13:1133–1145

    Article  CAS  PubMed  Google Scholar 

  6. Brandstater ME, Lambert EH (1969) A histochemical study of the spatial arrangement of muscle fibers in single motor units within rat tibialis anterior muscle. Bull Am Assoc Electromyogr Electrodiag 82:15–16

    Google Scholar 

  7. Bromberg MB (2007) Updating motor unit number estimation (MUNE). Clin Neurophysiol 118:1–8

    Article  PubMed  Google Scholar 

  8. Buchthal F, Guld C, Rosenfalck P (1957) Multielectrode study of the territory of a motor unit. Acta Physiol Scand 38:331–354

    Article  CAS  PubMed  Google Scholar 

  9. Burke RE, Tsairis P (1973) Anatomy and innervation ratios in motor units of cat gastrocnemius. J Physiol 234:749–765

    CAS  PubMed  Google Scholar 

  10. Chamberlain S, Lewis DM (1989) Contractile characteristics and innervation ratio of rat soleus motor units. J Physiol 412:1–21

    CAS  PubMed  Google Scholar 

  11. Coers C, Tellerman-Toppet N, Gérard JM (1973) Terminal innervation ratio in neuromuscular disease. I. Methods and controls. Arch Neurol 29:210–214

    CAS  PubMed  Google Scholar 

  12. Dimitrov GV, Arabadzhiev TI, Hogrel JY, Dimitrova NA (2008) Simulation analysis of interference EMG during fatiguing voluntary contractions. Part I: what do the intramuscular spike amplitude-frequency histograms reflect? J Electromyogr Kinesiol 18:35–43

    Article  CAS  PubMed  Google Scholar 

  13. Dimitrov GV, Arabadzhiev TI, Hogrel JY, Dimitrova NA (2008) Simulation analysis of interference EMG during fatiguing voluntary contractions. Part II: changes in amplitude and spectral characteristics. J Electromyogr Kinesiol 18:26–34

    Article  CAS  PubMed  Google Scholar 

  14. Dimitrov GV, Disselhorts-Klug C, Dimitrova NA, Trachterna A, Rau G (2002) The presence of unknown layer of skin and fat is an obstacle to a correct estimation of the motor unit size from surface detected potentials. Electromyogr Clin Neurophysiol 42:231–241

    CAS  PubMed  Google Scholar 

  15. Dimitrova NA, Disselhorst-Klug C, Trachterna A, Dimitrov GV (2002) Surface detected potentials of normal and reinnervated motor units: a simulation study for muscles consisted of short fibers. Electromyogr Clin Neurophysiol 42:219–230

    CAS  PubMed  Google Scholar 

  16. Diószeghy P (2002) Scanning electromyography. Muscle Nerve Supplement 11:S66–S71

    Article  Google Scholar 

  17. Duchêne J, Hogrel JY (2000) A model of EMG generation. IEEE Trans Biomed Eng 47:192–201

    Article  PubMed  Google Scholar 

  18. Edström L, Kugelberg E (1968) Histochemical composition, distribution of fibers and fatigability of single motor units: anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatr 31:424–433

    Article  PubMed  Google Scholar 

  19. Enoka RM, Fuglevand AJ (2001) Motor unit physiology: some unresolved issues. Muscle Nerve 24:4–17

    Article  CAS  PubMed  Google Scholar 

  20. Farina D, Fosci M, Merletti R (2002) Motor unit strategies investigated by surface EMG variables. J Appl Physiol 92:235–247

    Article  PubMed  Google Scholar 

  21. Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  22. Fuglevand AJ, Segal SS (1997) Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations. J Appl Physiol 83:1223–1234

    CAS  PubMed  Google Scholar 

  23. Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488

    CAS  PubMed  Google Scholar 

  24. Gath I, Stålberg E (1982) On the measurement of fibre density in human muscles. Electroencephalogr Clin Neurophysiol 54:699–706

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton-Wright A, Stashuk DW (2005) Physiologically based simulation of clinical EMG signals. IEEE Trans Biomed Eng 52:171–183

    Article  PubMed  Google Scholar 

  26. Henneman E, Olson CB (1965) Relations between structure and function in the design of skeletal muscles. J Neurophysiol 28:581–598

    CAS  PubMed  Google Scholar 

  27. Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motorneurons. J Neurophysiol 28:560–580

    CAS  PubMed  Google Scholar 

  28. Hilton-Brown P, Nandedkar SD, Stålberg EV, (1985) Simulation of fiber density in single-fibre electromyography and its relationship to macro-EMG. Med Biol Eng Comput 23:541–546

    Article  CAS  PubMed  Google Scholar 

  29. Hilton-Brown P, Stålberg E, Trontelj J, Mihelin M (1985) Causes of the increased fiber density in muscular dystrophies studied with single fiber EMG during electrical stimulation. Med Biol Eng Comput 8:383–388

    CAS  Google Scholar 

  30. Holobar A, Farina D, Gazzoni M, Merletti R, Zazula D (2009) Estimating motor unit discharge patterns from high-density surface electromyogram. Clin Neurophysiol 120:449–450

    Article  Google Scholar 

  31. Kanda K, Hashizume K (1992) Factors causing differences in force output among motor units in the cat medialis gastrocnemius muscle. J Physiol 448:677–695

    CAS  PubMed  Google Scholar 

  32. Karlsson L, Hammarberg B, Stålberg E (2003) An application of a muscle model to study electromyographic signals. Comput Meth Progr Biomed 71:225–233

    Article  Google Scholar 

  33. Keenan KG, Farina D, Merletti R, Enoka RM (2006) Influence of motor unit properties on the size of the simulated evoked surface EMG potential. Exp Brain Res 169:37–49

    Article  PubMed  Google Scholar 

  34. Keenan KG, Valero-Cuevas FJ (2007) Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties. J Neurophysiol 98:1581–1590

    Article  PubMed  Google Scholar 

  35. Kugelberg E, Edström L, Abbruzzese M (1970) Mapping of motor units in experimentally reinnervated rat muscle. Interpretation of histochemical and atrophic patterns in neurogenic lesions. J Neurol Neurosurg Psychiatr 33:319–329

    Article  CAS  PubMed  Google Scholar 

  36. Lowery MM, Weir RF, Kuiken TA (2006) Simulation of intramuscular EMG signals detected using implantable myoelectric sensors (IMES). IEEE Trans Biomed Eng 53:1926–1933

    Article  PubMed  Google Scholar 

  37. McComas AJ, Fawcett PRW, Campbell MJ, Sica REP (1971) Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatr 34:121–131

    Article  CAS  PubMed  Google Scholar 

  38. Merletti R, Lo Conte L, Avignone E, Guglielminotti P (1999) Modeling of surface myoelectric signals—part I: model implementation. IEEE Trans Biomed Eng 46:810–820

    Article  CAS  PubMed  Google Scholar 

  39. Merletti R, Lo Conte L, Avignone E, Guglielminotti P (1999) Modeling of surface myoelectric signals—part II: model-based signal interpretation. IEEE Trans Biomed Eng 46:821–829

    Article  CAS  PubMed  Google Scholar 

  40. Merletti R, Farina D, Gazzoni M (2003) The linear electrode array: a useful tool with many applications. J Electromyogr Kinesiol 13:37–47

    Article  PubMed  Google Scholar 

  41. Miller-Larsson A (1986) Motor unit action potential field modelling results. Biol Cybern 53:307–321

    Article  CAS  PubMed  Google Scholar 

  42. Milner-Brown HS, Stein RB, Yemm R (1973) The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol 230:359–370

    CAS  PubMed  Google Scholar 

  43. Monti RJ, Roy RR, Edgerton VR (2001) Role of motor unit structure in defining function. Muscle Nerve 24:848–866

    Article  CAS  PubMed  Google Scholar 

  44. Nandedkar S, Stålberg E (1983) Simulation of macro EMG motor unit potentials. Electroencephalogr Clin Neurophysiol 56:52–62

    Article  CAS  PubMed  Google Scholar 

  45. Nandedkar SD (2002) Models and simulations in electromyography. Muscle Nerve Supplement 11:S46–S54

    Article  Google Scholar 

  46. Nandedkar SD, Sanders DB (1988) EMG of reinnervated motor units: a simulation study. Electroencephalogr Clin Neurophysiol 70:177–184

    Article  CAS  PubMed  Google Scholar 

  47. Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I (2009) Mathematical analysis of a muscle architecture model. Math Biosci 217:64–76

    Article  PubMed  Google Scholar 

  48. Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I (2009) Comparative evaluation of motor unit architecture models. Med Biol Eng Comput 47:1131–1142

    Article  PubMed  Google Scholar 

  49. Navallas J, Stålberg E (2009) Studying motor end-plate topography by means of scanning-electromyography. Clin Neurophysiol 120:1335–1341

    Article  PubMed  Google Scholar 

  50. Rafuse VF, Gordon T (1996) Self-reinnervated cat medial gastrocnemius muscles. I. Comparisons of the capacity for regenerating nerves from enlarged motor units after extensive peripheral nerve injuries. J Neurophysiol 75:268–281

    CAS  PubMed  Google Scholar 

  51. Roeleveld K, Sandberg A, Stålberg EV, Stegeman DF (1998) Motor unit size estimation of enlarged motor units with surface elctromyography. Muscle Nerve 21:878–886

    Article  CAS  PubMed  Google Scholar 

  52. Roeleveld K, Stegeman DF, Flack B, Stålberg EV (1997) Motor unit size estimation: confrontation of surface EMG with macro EMG. Electroencephalogr Clin Neurophysiol 105:181–188

    Article  CAS  PubMed  Google Scholar 

  53. Roy RR, Garfinkel A, Ounjian M, Payne J, Hirahara A, Hsu E, Edgerton VR (1995) Three-dimensional structure of cat tibialis anterior motor units. Muscle Nerve 18:1187–1195

    Article  CAS  PubMed  Google Scholar 

  54. Schnetzer MA, Ruegg DG, Baltensperger R, Gabriel JP (2001) Three-dimensional model of a muscle and simulation of its surface EMG. In: Proceedings of the 23rd Annual International Conference of the IEEE EMBS, vol 2, pp 1038–1043

  55. Stashuk DW (1993) Simulation of electromyographic signals. J Electromyogr Kinesiol 3:157–173

    Article  CAS  PubMed  Google Scholar 

  56. Stegeman DF, Merletti R, Hermens HJ (2004) EMG modeling and simulation. In: Merletti R, Parker P (eds) Electromyography. Physiology, engineering, and noninvasive applications. IEEE Press Series on Biomedical Engineering. Wiley, Hoboken, NJ

  57. Stålberg E (1980) Macro EMG, a new recording technique. J Neurol Neurosurg Psychiatr 43:475–482

    Article  PubMed  Google Scholar 

  58. Stålberg E, Antoni L (1980) Electrophysiological cross section of the motor unit. J Neurol Neurosurg Psychiatr 43:464–474

    Article  Google Scholar 

  59. Stålberg E, Diószeghy P (1991) Scanning EMG in normal muscle and in neuromuscular disorders. Electroencephalogr Clin Neurophysiol 81:403–416

    PubMed  Google Scholar 

  60. Stålberg E, Fawcett PRW (1982) Macro EMG changes in healthy subjects of different ages. J Neurol Neurosurg Psychiatr 45:870–878

    Article  PubMed  Google Scholar 

  61. Stålberg E, Karlsson L (2001) Simulation of the normal concentric needle electromyogram by using a muscle model. Clin Neurophysiol 112:464–471

    Article  PubMed  Google Scholar 

  62. Stålberg E, Karlsson L (2001) Simulation of EMG in pathological situations. Clin Neurophysiol 112:869–878

    Article  PubMed  Google Scholar 

  63. Stålberg E, Thiele B (1975) Motor unit fiber density in the extensor digitorum communis muscle. J Neurol Neurosurg Psychiatr 38:874–880

    Article  PubMed  Google Scholar 

  64. Trontelj JV, Jabre J, Mihelin M (2004) Needle and wire detection techniques. In: Merletti R, Parker P (eds) Electromyography. Physiology, engineering, and noninvasive applications. IEEE Press Series on Biomedical Engineering. Wiley, Hoboken, NJ

  65. Zalewska E, Hausmanova-Petrusewicz I, Stålberg E (2004) Modeling studies on irregular motor unit potentials. Muscle Nerve 115:543–556

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Spanish Ministry of Education and Science (Grant SAF2007-65383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Navallas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navallas, J., Malanda, A., Gila, L. et al. A muscle architecture model offering control over motor unit fiber density distributions. Med Biol Eng Comput 48, 875–886 (2010). https://doi.org/10.1007/s11517-010-0642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0642-x

Keywords

Navigation