Skip to main content

Advertisement

Log in

Prediction of scoliosis progression with serial three-dimensional spinal curves and the artificial progression surface technique

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Adolescent idiopathic scoliosis (AIS) progression is clinically monitored by a series of full spinal X-rays. To decrease radiation exposure, an artificial progression surface (APS) is proposed to predict progression. Fifty-six acquisitions (posteroanterior radiographs, 0° and 20°) were obtained from 11 AIS patients (29.8 ± 9.6° Cobb angle). Three-dimensional curves were constructed through vertebral pedicle centers. Three previous serial spinal curves (6-month intervals) were used to construct an APS with a Non-uniform Rational B-Spline surfacing technique. Future progression was achieved by aligning the curves on the APS using the generalized cross-validation extrapolation technique. With three and four previous serial spinal curves, the prediction accuracies of future progression at the next 6-month interval were 4.1 ± 3.3° for Cobb angles and 3.6 ± 3.5 mm for apex lateral deviations. Apex locations and Cobb regions varied within one vertebral level. The proposed technique shows potential as an accurate three-dimensional prediction method for AIS progression and could help pediatricians make decisions about treatment. However, it could only be applied once before more radiographic data would be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aubin CE, Dansereau J, Parent F et al (1997) Morphometric evaluations of personalised 3d reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618

    Article  CAS  PubMed  Google Scholar 

  2. Bengio S, Fessant F, and Collobert D (1995) A connectionist system for medium-term horizon time series prediction. In: Proceedings of the international workshop on applied neural networks to telecommunications

  3. Burwell RG, Cole AA, Cook TA et al (1992) Pathogenesis of idiopathic scoliosis. The Nottingham concept. Acta Orthop Belg 58(Suppl 1):33–58

    PubMed  Google Scholar 

  4. Carman DL, Browne RH, Birch JG (1990) Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am 72:328–333

    CAS  PubMed  Google Scholar 

  5. Closkey RF, Schultz AB (1993) Rib cage deformities in scoliosis: spine morphology, rib cage stiffness, and tomography imaging. J Orthop Res 11:730–737

    Article  CAS  PubMed  Google Scholar 

  6. Delorme S, Petit Y, de Guise JA et al (2003) Assessment of the 3-d reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-d radiographic images. IEEE Trans Biomed Eng 50:989–998

    Article  CAS  PubMed  Google Scholar 

  7. Don S (2004) Radiosensitivity of children: potential for overexposure in CR and DR and magnitude of doses in ordinary radiographic examinations. Pediatr Radiol 34(Suppl 3):S167–S172

    Article  PubMed  Google Scholar 

  8. Duval-Beaupere G (1971) Pathogenic relationship between scoliosis and growth. Churchill Livingstone, Edinburgh

    Google Scholar 

  9. Duval-Beaupere G (1992) Rib hump and supine angle as prognostic factors for mild scoliosis. Spine 17:103–107

    Article  CAS  PubMed  Google Scholar 

  10. Edwards T, Tansley SW, Davey N et al (1997) Traffic trends analysis using neural networks. Proc Int Workshop Appl Neural Netw Telecom 3:157–164

    Google Scholar 

  11. Goldberg CJ, Dowling FE, Hall JE et al (1993) A statistical comparison between natural history of idiopathic scoliosis and brace treatment in skeletally immature adolescent girls. Spine 18:902–908

    Article  CAS  PubMed  Google Scholar 

  12. Kadoury S, Cheriet F, Laporte C, Labelle H (2007) A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Med Bio Eng Comput 45:591–602

    Article  Google Scholar 

  13. Karol LA, Johnston CE 2nd, Browne RH et al (1993) Progression of the curve in boys who have idiopathic scoliosis. J Bone Joint Surg Am 75:1804–1810

    CAS  PubMed  Google Scholar 

  14. Korovessis P, Piperos G, Sidiropoulos P et al (1994) Adult idiopathic lumbar scoliosis. A formula for prediction of progression and review of the literature. Spine 19:1926–1932

    Article  CAS  PubMed  Google Scholar 

  15. Labelle H, Dansereau J, Bellefleur C et al (1995) Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur Spine J 4:88–94

    Article  CAS  PubMed  Google Scholar 

  16. Lee K (1999) Principles of cad/cam/cae systems. Prentice Hall, New York

    Google Scholar 

  17. Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83-A:1169–1181

    CAS  PubMed  Google Scholar 

  18. Levy AR, Goldberg MS, Mayo NE et al (1996) Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine 21:1540–1547

    Article  CAS  PubMed  Google Scholar 

  19. Marzan GT (1976) Rational design for close range photogrammetry. Ph.D., University of Illinois at Urbana-Champaign, Urbana, IL

  20. Masters T (1993) Practical neural network recipes in c++. Academic Press, California

    Google Scholar 

  21. Mehta MH (1972) The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. J Bone Joint Surg Br 54:230–243

    CAS  PubMed  Google Scholar 

  22. Murray DW, Bulstrode CJ (1996) The development of adolescent idiopathic scoliosis. Eur Spine J 5:251–257

    Article  CAS  PubMed  Google Scholar 

  23. Oestreich AE, Young LW, Young Poussaint T (1998) Scoliosis circa 2000: radiologic imaging perspective I. Diagnosis and pretreatment evaluation. Skeletal Radiol 27:591–605

    Article  CAS  PubMed  Google Scholar 

  24. Patterson DW, Chan KH, and Tan CM (1993) Time series forecasting with neural nets: A comparative study. In: Proceedings of the international conference on neural network applications to signal processing, Singapore

  25. Perdriolle R, Becchetti S, Vidal J et al (1993) Mechanical process and growth cartilages. Essential factors in the progression of scoliosis. Spine 18:343–349

    Article  CAS  PubMed  Google Scholar 

  26. Peterson LE, Nachemson AL (1995) Prediction of progression of the curve in girls who have adolescent idiopathic scoliosis of moderate severity. Logistic regression analysis based on data from the brace study of the scoliosis research society. J Bone Joint Surg Am 77:823–827

    CAS  PubMed  Google Scholar 

  27. Poncet P, Delorme S, Ronsky JL, Dansereau J, Clynch G, Harder J, Dewar RD, Labelle H, Gu PH, Zernicke RF (2000) Reconstruction of laser-scanned 3D torso topography and stereoradiographical spine and rib-cage geometry in scoliosis. Comput Methods Biomech Biomed Eng 4:59–75

    Article  CAS  Google Scholar 

  28. Poncet P, Dansereau J, Labelle H (2001) Geometric torsion in idiopathic scoliosis: three-dimensional analysis and proposal for a new classification. Spine 26:2235–2243

    Article  CAS  PubMed  Google Scholar 

  29. Pope MH, Stokes IA, Moreland M (1984) The biomechanics of scoliosis. Crit Rev Biomed Eng 11:157–188

    CAS  PubMed  Google Scholar 

  30. Reamy BV, Slakey JB (2001) Adolescent idiopathic scoliosis: review and current concepts. Am Fam Physician 64:111–116

    CAS  PubMed  Google Scholar 

  31. Samuelsson L, Norén L (1997) Trunk rotation in scoliosis. The influence of curve type and direction in 150 children. Acta Orthop Scand 68(3):273–276

    Article  CAS  PubMed  Google Scholar 

  32. Soucacos PN, Zacharis K, Gelalis J et al (1998) Assessment of curve progression in idiopathic scoliosis. Eur Spine J 7:270–277

    Article  CAS  PubMed  Google Scholar 

  33. Stokes IA, Shuma-Hartswick D, Moreland MS (1988) Spine and back-shape changes in scoliosis. Acta Orthop Scand 59:128–133

    CAS  PubMed  Google Scholar 

  34. Stokes IA, Dansereau J, Moreland MS (1989) Rib cage asymmetry in idiopathic scoliosis. J Orthop Res 7:599–606

    Article  CAS  PubMed  Google Scholar 

  35. Wright N (2000) Imaging in scoliosis. Arch Dis Child 82:38–40

    Article  CAS  PubMed  Google Scholar 

  36. Yamauchi Y, Yamaguchi T, Asaka Y (1988) Prediction of curve progression in idiopathic scoliosis based on initial roentgenograms. A proposal of an equation. Spine 13:1258–1261

    Article  CAS  PubMed  Google Scholar 

  37. Ylikoski M (1993) Spinal growth and progression of adolescent idiopathic scoliosis. Eur Spine J 1:236–239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support from Canadian Institutes of Health Research (CIHR), Alberta Children’s Hospital Foundation, Fraternal Order of Eagles (Alberta & Saskatchewan), Lew Reed Spinal Cord Injury Foundation, Alberta Ingenuity Fund (AIF), and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet L. Ronsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Ronsky, J.L., Cheriet, F. et al. Prediction of scoliosis progression with serial three-dimensional spinal curves and the artificial progression surface technique. Med Biol Eng Comput 48, 1065–1075 (2010). https://doi.org/10.1007/s11517-010-0654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0654-6

Keywords

Navigation