Skip to main content

Advertisement

Log in

Evaluation of an algorithm for arterial lumen diameter measurements by means of ultrasound

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We have developed an algorithm for arterial luminal diameter measurement by means of ultrasound and evaluated the algorithm on agar vessel phantoms and in vivo. The algorithm utilises relative threshold detection on the inner slopes of the arterial walls before the resolution is improved by solving the equation of a straight line between the samples around the threshold value. Further, correction distances added to compensate for the underestimation when using the inner slopes were found to be 304 μm for the near wall and 415 μm for the far wall. The measured mean diameters of ten consecutive images of 3-, 6- and 9-mm phantoms were 3,006 μm (SD 4), 5,918 μm (SD 1) and 8,936 μm (SD 2), respectively. The mean differences between the images were 0.19, 0.04 and 0.37 μm, respectively. In vivo, the intra- and inter-observer variabilities were −64 μm (2SD 358) and −57 μm (2SD 366), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahlgren ÅR, Länne T, Wollmer P, Sonesson B, Hansen F, Sundkvist G (1995) Increased arterial stiffness in women, but not in men, with IDDM. Diabetologia 38:1082–1089

    Article  Google Scholar 

  2. Balasundaram JK, Banu RS (2006) A non-invasive study of alterations of the carotid artery with age using ultrasound images. Med Biol Eng Comput 44(9):767–772

    Article  PubMed  Google Scholar 

  3. Beux F, Carmassi S, Salvetti MV, Ghiadoni L, Huang Y, Taddei S, Salvetti A (2001) Automatic evaluation of arterial diameter variation from vascular echographic images. Ultrasound Med Biol 27:1621–1629

    Article  CAS  PubMed  Google Scholar 

  4. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476):307–310

    Article  Google Scholar 

  5. Burlew MM, Madsen EL, Zagzebski JA, Banjavic RA, Sum SW (1980) A new ultrasound tissue-equivalent material. Radiology 134(2):517–520

    CAS  PubMed  Google Scholar 

  6. Cinthio M, Jansson T, Eriksson A, Persson HW, Lindstrom K (2004). A robust and fast algorithm for automatic arterial lumen diameter measurement with ultrasound. Ultrasonic methods for 2D arterial wall movement measurements. Lund, Lund Institute of Technology, Lund University. ISSN 0346-6221:5/04

  7. Cinthio M, Ahlgren ÅR, Jansson T, Eriksson A, Persson HW, Lindström K (2005) Evaluation of an ultrasonic echo-tracking method for measurements of arterial wall movements in two dimensions. IEEE Trans Ultrason Ferroelectr Freq Control 52(8):1300–1311

    Article  PubMed  Google Scholar 

  8. Cinthio M, Ahlgren ÅR, Bergkvist J, Jansson T, Persson HW, Lindström K (2006) Longitudinal movements and resulting shear strain of the arterial wall. Am J Physiol Heart Circ Physiol 291:H394–H402

    Article  CAS  PubMed  Google Scholar 

  9. de Boor C (1978) A practical guide to splines. Springer-Verlag, New York

    Google Scholar 

  10. Eriksson A, Greiff E, Loupas T, Persson M, Pesque P (2002) Arterial pulse wave velocity with tissue Doppler imaging. Ultrasound Med Biol 28(5):571–580

    Article  CAS  PubMed  Google Scholar 

  11. Graf S, Gariepy J, Massonneau M, Armentano RL, Mansour S, Barra JG, Simon A, Levenson J (1999) Experimental and clinical validation of arterial diameter waveform and intimal media thickness obtained from B-mode ultrasound image processing—fundamental principles and description of a computerized system. Ultrasound Med Biol 25(9):1353–1363

    Article  CAS  PubMed  Google Scholar 

  12. Gustavsson T, Liang Q, Wendelhag I, Wikstrand J (1994) A dynamic programming procedure for automated ultrasonic measurement of the carotid artery. Proc IEEE Comput Cardiol 1994:297–300

    Google Scholar 

  13. Hoeks APG, Di X, Brands PJ, Reneman RS (1995) An effective algorithm for measuring diastolic artery diameters. Arch Acoust 20(1):65–76

    Google Scholar 

  14. Kawamura Y, Yokota Y, Nogata F (2008) Estimation of carotid diameter with heartbeat on longitudinal B-mode ultrasonic images. Conf Proc IEEE Eng Med Biol Soc 2008:3142–3145

    CAS  PubMed  Google Scholar 

  15. Kawasaki T, Sasayama S, Yagi SI, Asakawa T, Hirai T (1987) Noninvasive assessment of the age-related-changes in stiffness of major branches of the human arteries. Cardiovasc Res 21(9):678–687

    Article  CAS  PubMed  Google Scholar 

  16. Li S, McDicken WN, Hoskins PR (1993) Blood vessel diameter measurement by ultrasound. Physiol Meas 14(3):291–297

    Article  PubMed  Google Scholar 

  17. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45(1):35–49

    Article  CAS  PubMed  Google Scholar 

  18. Newey VR, Nassiri DK (2002) Online artery diameter measurements in ultrasound images using artificial neural network. Ultrasound Med Biol 28(2):209–216

    Article  CAS  PubMed  Google Scholar 

  19. Peterson LH, Jensen RE, Parnell J (1960) Mechanical properties of arteries in vivo. Circ Res 8(3):622–639

    Google Scholar 

  20. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R (1986) Intimal plus media thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74:1399–1406

    CAS  PubMed  Google Scholar 

  21. Ricotta J, Pagan J, Xenos M, Alemu Y, Einav S, Bluestein D (2008) Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput 46(11):1059–1068

    Article  PubMed  Google Scholar 

  22. Rossi AC, Brands PJ, Hoeks APG (2009) Nonlinear processing in B-mode ultrasound affects carotid diameter assessment. Ultrasound Med Biol 35(5):736–747

    Article  PubMed  Google Scholar 

  23. Selzer RH, Hodis HN, Kwong-Fu H, Mack WJ, Lee PL, Liu C-R, Liu C-H (1994) Evaluation of computerized edge tracking for quantifying intima-media thickness of the common carotid artery from B-mode ultrasound images. Atherosclerosis 111:1–11

    Article  CAS  PubMed  Google Scholar 

  24. Sonka M, Liang W, Lauer RM (1998) Flow-mediated dilation in brachial arteries: computer analysis of ultrasound image sequences. CVD Prev 1(2):147–155

    Google Scholar 

  25. Stadler RW, Karl WC, Lees RS (1996) New methods for arterial diameter measurement from B-mode images. Ultrasound Med Biol 22:25–34

    Article  CAS  PubMed  Google Scholar 

  26. Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47(2):197–206

    Article  PubMed  Google Scholar 

  27. Tortoli P, Bambi G, Ricci S (2006) Accurate doppler angle estimation for vector flow measurements. IEEE Trans Ultrason Ferroelectr Freq Control 53(8):1425–1431

    Article  PubMed  Google Scholar 

  28. Wendelhag I, Gustavsson T, Suurkula M, Berglund G, Wikstrand J (1991) Ultrasound measurement of wall thickness in the carotid artery: fundamental principles and description of computerized analysing system. Clin Physiol 11:565–577

    Article  CAS  PubMed  Google Scholar 

  29. Wikstrand J, Wiklund O (1992) Frontier in cardiovascular science. quantitative measurement of atherosclerotic manifestations in humans. Arterioscler Thromb 12(1):114–119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. Ann-Kristin Jönsson and Mrs. Anita Eriksson for skilful technical assistance. This study was supported by grants from the Swedish Research Council, the Knut and Alice Wallenberg foundation, the Crafoord Foundation and the Royal Physiographic Society in Lund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Cinthio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinthio, M., Jansson, T., Eriksson, A. et al. Evaluation of an algorithm for arterial lumen diameter measurements by means of ultrasound. Med Biol Eng Comput 48, 1133–1140 (2010). https://doi.org/10.1007/s11517-010-0660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0660-8

Keywords

Navigation