Skip to main content
Log in

Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this study, a novel approach is proposed, the imaging of crackle sounds distribution on the thorax based on processing techniques that could contend with the detection and count of crackles; hence, the normalized fractal dimension (NFD), the univariate AR modeling combined with a supervised neural network (UAR-SNN), and the time-variant autoregressive (TVAR) model were assessed. The proposed processing schemes were tested inserting simulated crackles in normal lung sounds acquired by a multichannel system on the posterior thoracic surface. In order to evaluate the robustness of the processing schemes, different scenarios were created by manipulating the number of crackles, the type of crackles, the spatial distribution, and the signal to noise ratio (SNR) at different pulmonary regions. The results indicate that TVAR scheme showed the best performance, compared with NFD and UAR-SNN schemes, for detecting and counting simulated crackles with an average specificity very close to 100%, and average sensitivity of 98 ± 7.5% even with overlapped crackles and with SNR corresponding to a scaling factor as low as 1.5. Finally, the performance of the TVAR scheme was tested against a human expert using simulated and real acoustic information. We conclude that a confident image of crackle sounds distribution by crackles counting using TVAR on the thoracic surface is thoroughly possible. The crackles imaging might represent an aid to the clinical evaluation of pulmonary diseases that produce this sort of adventitious discontinuous lung sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al Jarad N, Davies SW, Logan-Sinclair R, Rudd RM (1994) Lung crackle characteristics in patients with asbestosis, asbestos-related pleural disease and left ventricular failure using a time-expanded waveform analysis—a comparative study. Respir Med 88:37–46

    Article  CAS  PubMed  Google Scholar 

  2. Charleston-Villalobos S, Cortés-Rubiano S, González-Camarena R, Chi-Lem G, Aljama-Corrales T (2004) Respiratory acoustic thoracic imaging (RATHI): assessing deterministic interpolation techniques. Med Biol Eng Comput 42:618–626

    Article  CAS  PubMed  Google Scholar 

  3. Charleston-Villalobos S, González-Camarena R, Chi-Lem G, Aljama-Corrales T (2007) Crackle sounds analysis by empirical mode decomposition. IEEE Eng Med Biol Mag 26(1):40–47

    Article  PubMed  Google Scholar 

  4. Dellinger RP, Jean S, Cinel I, Tay C, Rajanala S, Glickman YA, Parrillo JE (2007) Regional distribution of acoustic-based lung vibration as a function of mechanical ventilation mode. Crit Care 11(1):R26

    Google Scholar 

  5. Dellinger RP, Parrillo JE, Kushnir A, Rossi M, Kushnir I (2008) Dynamic visualization of lung sounds with a vibration response device: a case series. Respiration 75(1):60–72

    Article  PubMed  Google Scholar 

  6. Dosani R, Kraman SS (1983) Lung sound intensity variability in normal men. A contour phonopneumographic study. Chest 83:628–631

    Article  CAS  PubMed  Google Scholar 

  7. Duda OR, Hart EP, Store GD (2001) Pattern classification. Wiley, New York

  8. Hadjileontiadis LJ (2007) Empirical mode decomposition and fractal dimension filter: a novel technique for denoising explosive lung sounds. IEEE Eng Med Biol Mag 26(1):30–39

    Article  PubMed  Google Scholar 

  9. Hadjileontiadis LJ (2009) A texture-based classification of crackles and squawks using lacunarity. IEEE Trans Biomed Eng 56(3):718–732

    PubMed  Google Scholar 

  10. Hadjileontiadis LJ, Panas SM (1996) Nonlinear separation of crackles and squawks from vesicular sounds using third-order statistics. In: Proceedings 18th annual international conference IEEE-EMBS, Amsterdam, Netherlands, pp 2217–2220

  11. Hadjileontiadis LJ, Panas SM (1997) Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter. IEEE Trans Biomed Eng 44:1269–1281

    Article  CAS  PubMed  Google Scholar 

  12. Hadjileontiadis LJ, Rekanos IT (2003) Detection of explosive lung and bowel sounds by means of fractal dimension. IEEE Signal Process Lett 10(10):311–314

    Article  Google Scholar 

  13. Haykin S (1998) Adaptive filter theory. Prentice Hall, Englewood Cliffs, NJ

  14. Hoevers J, Loudon R (1990) Measuring crackles. Chest 98:1240–1243

    Article  CAS  PubMed  Google Scholar 

  15. Kaisla TK, Sovijärvi ARA, Piirilä P, Rajala HM, Haltsonen S, Rosqvist T (1991) Validated method for automatic detection of lung sounds crackles. Med Biol Eng Comput 29:517–521

    Article  CAS  PubMed  Google Scholar 

  16. Katz MJ (1988) Fractals and the analysis of waveforms. Comput Biol Med 18:145–156

    Article  CAS  PubMed  Google Scholar 

  17. Kiyokawa H, Greenberg M, Shirota K, Pasterkamp H (2001) Auditory detection of simulated crackles in breath sounds. Chest 119:1886–1892

    Article  CAS  PubMed  Google Scholar 

  18. Kompis M, Pasterkamp H, Wodicka GR (2001) Acoustic imaging of the human chest. Chest 120:1309–1321

    Article  CAS  PubMed  Google Scholar 

  19. Ljung L (1987) System identification. Prentice Hall, Englewood Cliffs, NJ

  20. Lu S, Ju KH, Chon KH (2001) A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry. IEEE Trans Biomed Eng 48(10):1116–1124

    Article  CAS  PubMed  Google Scholar 

  21. Mangione S, Nieman LZ (1999) Pulmonary auscultatory skills during training in internal medicine and family practice. Am J Respir Crit Care Med 159(4 Pt 1):1119–1124

    CAS  PubMed  Google Scholar 

  22. Martinez-Hernandez HG, Aljama-Corrales T, Gonzalez-Camarena R, Charleston-Villalobos S, Chi-Lem G (2005) Computerized classification of normal and abnormal lung sounds by multivariate linear autoregressive model. In: Proceeding 27th annual international conference IEEE/EMBS, Shanghai, China, pp 1464–1467

  23. Mor R, Kushnir I, Meyer J, Ekstein J, Ben-Dov I (2007) Breath sound distribution images of patients with pneumonia and pleural effusion. Respir Care 52(12):1753–1760

    PubMed  Google Scholar 

  24. Mori M, Kinoshita K, Morinari H, Shiraishi T, Koike S, Murao S (1980) Waveform and spectral analysis of crackles. Thorax 35:843–850

    Article  CAS  PubMed  Google Scholar 

  25. Munakata M, Ukita H, Doi I, Ohtsuka Y, Masaki Y, Homma Y, Kawakami Y (1991) Spectral and waveform characteristics of fine and coarse crackles. Thorax 46:651–757

    Article  CAS  PubMed  Google Scholar 

  26. Murphy RL, Holford SK, Knowler WC (1977) Visual lung sound characterization by time-expanded waveform analysis. N Engl J Med 296:968–971

    Article  PubMed  Google Scholar 

  27. Ono M, Arakawa K, Mori M, Sugimoto T, Harashima H (1989) Separation of fine crackles from vesicular sounds by a nonlinear digital filter. IEEE Trans Biomed Eng 36:286–291

    Article  CAS  PubMed  Google Scholar 

  28. Piirilä P, Sovijärvi ARA (1995) Crackles: recording, analysis and clinical significance. Eur Respir J 8:2139–2148

    Article  PubMed  Google Scholar 

  29. Piirilä P, Sovijärvi ARA, Kaisla T, Rajala HM, Katila T (1991) Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest 99:1076–1083

    Article  PubMed  Google Scholar 

  30. Reichert S, Gass R, Brandt C, Andres E (2008) Analysis of respiratory sounds: state of the art. Clin Med 2:45–58

    Google Scholar 

  31. Ryu JH, Daniels CE, Hartman TE, Yi ES (2007) Diagnosis of interstitial lung diseases. Mayo Clin Proc 82(8):976–986

    Article  PubMed  Google Scholar 

  32. Tolias YA, Hadjileontiadis LJ, Panas SM (1998) Real-time separation of discontinuous adventitious sounds from vesicular sounds using a fuzzy rule-based filter. IEEE Trans Inf Technol Biomed 2:204–215

    Article  CAS  PubMed  Google Scholar 

  33. Vyshedskiy A, Bezares F, Paciej R, Ebril M, Shane J, Murphy R (2005) Transmission of crackles in patients with interstitial pulmonary fibrosis, congestive heart failure and pneumonia. Chest 128:1468–1474

    Article  PubMed  Google Scholar 

  34. Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, Murphy R (2009) Mechanism of inspiratory and expiratory crackles. Chest 135:156–164

    Article  PubMed  Google Scholar 

  35. Zou R, Wang H, Chon KH (2003) A robust time-varying identification algorithm using basis functions. Ann Biomed Eng 31(7):840–853

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Charleston-Villalobos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charleston-Villalobos, S., Dorantes-Méndez, G., González-Camarena, R. et al. Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques. Med Biol Eng Comput 49, 15–24 (2011). https://doi.org/10.1007/s11517-010-0663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0663-5

Keywords

Navigation