Skip to main content
Log in

Optimized stimulus presentation patterns for an event-related potential EEG-based brain–computer interface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

P300 brain–computer interface (BCI) systems typically use a row/column (RC) approach. This article presents a P300 BCI based on a 12 × 7 matrix and new paradigmatic approaches to flashing characters designed to decrease the number of flashes needed to identify a target character. Using an RC presentation, a 12 × 7 matrix requires 19 flashes to present all items twice (12 columns and seven rows) per trial. A 12 × 7 matrix contains 84 elements (characters). To identify a target character in 12 × 7 matrix using the RC pattern, 19 flashes (sub-trials) are necessary. In each flash, the selected characters (one column or one row in the RC pattern) are flashing. We present four new paradigms and compare the performance to the RC paradigm. These paradigms present quasi-random groups of characters using 9, 12, 14 and 16 flashes per trial to identify a target character. The 12-, 14- and 16-flash patterns were optimized so that the same character never flashed twice in succession. We assessed the practical bit rate and classification accuracy of the 9-, 12-, 14-, 16- and RC (19-flash) pattern conditions in an online experiment and with offline simulations. The results indicate that 16-flash pattern is better than other patterns and performance of an online P300 BCI can be significantly improved by selecting the best presentation paradigm for each subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allison BZ (2003) P3 or not P3: toward a better P300 BCI. PhD Dissertation, University of California, San Diego

  2. Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehabil Eng 11(2):110–113

    Article  PubMed  Google Scholar 

  3. Allison BZ, Pineda JA (2006) Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol 59(2):127–140

    Article  PubMed  Google Scholar 

  4. Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR (2008) Towards an independent brain–computer interface using steady state visual evoked potentials. Clin Neurophysiol 119(2):399–408

    Article  PubMed  Google Scholar 

  5. Allison BZ, Volosyak I, Luth T, Vabuena D, Sugiarto I, Spiegel MA, Teymourian A, Condro IS, Brindusescu A, Stenzel K, Cecotti H, Graser A (2008) BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? In: Proceedings of the 4th international brain–computer interface workshop and training course, Graz, pp 333–338

  6. Bell CJ, Shenoy P, Chalodhorn R, Rao RP (2008) Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng 5(2):214–220

    Article  PubMed  Google Scholar 

  7. Birbaumer N, Cohen LG (2007) Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 579:621–636

    Article  CAS  PubMed  Google Scholar 

  8. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kuber A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298

    Article  CAS  PubMed  Google Scholar 

  9. Birbaumer N, Hinterberger T, Kübler A, Neumann N (2003) The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Trans Neural Syst Rehabil Eng 111(2):120–123

    Article  Google Scholar 

  10. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Müller KR (2008) The Berlin brain–computer interface: accurate performance from first-session in BCI-naïve subjects. IEEE Trans Biomed Eng 55(10):2452–2462

    Article  PubMed  Google Scholar 

  11. Citi L, Poli R, Cinel C, Sepulveda F (2008) P300-based BCI mouse with genetically-optimized analogue control. IEEE Trans Neural Syst Rehabil Eng 16(1):51–61

    Article  PubMed  Google Scholar 

  12. Duncan-Johnson CC, Donchin E (1979) The time constant in P300 recording. Psychophysiology 16(1):53–55

    Article  CAS  PubMed  Google Scholar 

  13. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  CAS  PubMed  Google Scholar 

  14. Friman O, Luth T, Volosyak I, Graser A (2007) Spelling with steady-state visual evoked potentials. In: 3rd international IEEE/EMBS conference on neural engineering, Kohala Coast, pp 354–357

  15. Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, Kubler A (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46(3):617–625

    Article  CAS  PubMed  Google Scholar 

  16. Gonsalvez CL, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology 39(3):388–396

    Article  PubMed  Google Scholar 

  17. Guger C, Daban S, Sellers EW, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G (2009) How many people are able to control a P300-based brain-computer interface (BCI). Neurosci Lett 462(1):94–98

    Article  CAS  PubMed  Google Scholar 

  18. Hill NJ, Lal TN, Schröder M, Hinterberger T, Wilhelm B, Nijboer F, Mochty U, Widman G, Elger C, Schölkopf B, Kubler A, Birbaumer N (2006) Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of non-paralyzed and completely paralyzed subjects. IEEE Trans Neural Syst Rehabil Eng 14(2):183–186

    Article  PubMed  Google Scholar 

  19. Hill J, Farquhar J, Martens S, Bießmann F, Schölkopf B (2008) Effects of stimulus type and of error-correcting code design on BCI speller performance, NIPS (on line). http://books.nips.cc/papers/files/nips21/NIPS2008_0359.pdf

  20. Hoffmann U, Garcia G, Vesin JM, Diserens K, Ebrahimi T (2005) A boosting approach to P300 detection with application to brain-computer interfaces. In: 2nd international IEEE/EMBS conference on neural engineering, Arlington, pp 97–100

  21. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167(1):115–125

    Article  PubMed  Google Scholar 

  22. Jansen BH, Allam A, Kota P, Lachance K, Osho A, Sundaresan K (2004) An exploratory study of factors affecting single trial P300 detection. IEEE Trans Biomed Eng 51(6):975–978

    Article  PubMed  Google Scholar 

  23. Jin J, Allison BZ, Brunner C, Wang B, Wang XY, Zhang JH, Neuper C, Pfurtscheller G (2010) P300 Chinese input system based on Bayesian. LDA Biomed Tech 55(1):5–18

    Article  Google Scholar 

  24. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14(3):166–185

    Article  CAS  PubMed  Google Scholar 

  25. Kaper M, Meinicke P, Grosskathoefer U, Lingner T, Ritter H (2004) Support vector machines for the P300 speller paradigm. IEEE Trans Biomed Eng 51(6):1073–1076

    Article  PubMed  Google Scholar 

  26. Kolev V, Demiralp T, Yordanova J, Ademoglu A, Isoglu-Alkaç U (1997) Time-frequency analysis reveals multiple functional components during oddball P300. NeuroReport 8(8):2061–2065

    Article  CAS  PubMed  Google Scholar 

  27. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Methods 167(1):15–21

    Article  CAS  PubMed  Google Scholar 

  28. Kubler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, Mcfarland DJ, Birbaumer N, Wolpaw JR (2005) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10):1175–1177

    Article  Google Scholar 

  29. Lablor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly RB, McDarby G (2005) Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J Appl Signal Process 19:3156–3164

    Google Scholar 

  30. Leeb R, Lee F, Keinrath C, Scherer R, Bischof H, Pfurtscheller G (2008) Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 15(4):473–482

    Article  Google Scholar 

  31. Lei X, Yang P, Yao DZ (2009) An empirical bayesian framework for brain computer interface. IEEE Trans Neural Syst Rehabil Eng

  32. Lenhardt A, Kaper M, Ritter HJ (2008) An adaptive P300-based online brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 16(2):121–130

    Article  PubMed  Google Scholar 

  33. Martens SMM, Hill NJ, Farquhar J, Scholkopf B (2009) Overlap and refractory effects in a brain-computer interface speller based on the visual P300 event-related potential. Neural Eng 6(2):26–29

    Google Scholar 

  34. Martinez P, Bakardjian H, Cichocki A (2006) Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Comput Intell Neurosci 2007(2007):1–9

    Google Scholar 

  35. Muller-Putz GR, Pfurtscheller G (2008) Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans Biomed Eng 55(1):361–364

    Article  PubMed  Google Scholar 

  36. Muller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G (2005) Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng 2(4):123–130

    Article  PubMed  Google Scholar 

  37. Neuper C, Muller-Putz GR, Kubler A, Birbaumer N, Pfurtscheller G (2003) Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 114(3):399–409

    Article  CAS  PubMed  Google Scholar 

  38. Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millan JR, Allison BZ, Graimann B, Popescu F, Blankertz B, Muller KR (2008) Brain-computer interface for intelligent systems. IEEE Intell Syst 23(3):72–79

    Article  Google Scholar 

  39. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  40. Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, Palmas G, Beverina F (2006) P300-based brain-computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 117(3):531–537

    Article  CAS  PubMed  Google Scholar 

  41. Scherer R, Muller-Putz GR, Neuper C, Graimann B, Pfurtscheller G (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Biomed Eng 51(6):979–984

    Article  PubMed  Google Scholar 

  42. Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117(3):538–548

    Article  PubMed  Google Scholar 

  43. Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 73(3):242–252

    Article  PubMed  Google Scholar 

  44. Sugiarto I, Allison BZ, Graser A (2009) Optimization strategy for SSVEP-based BCI in spelling program application. In: ICCET’08 international conference on computer engineering and technology, pp 223–226

  45. Townsend G, LaPallo BK, Boulay C, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120

    Article  CAS  PubMed  Google Scholar 

  46. Trejo LJ, Rosipal R, Matthews B (2006) Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans Neural Syst Rehabil Eng 14(2):225–229

    Article  PubMed  Google Scholar 

  47. Vaughan TM, McFarland DJ, Schalk G, Sarnacki WA, Krusienski DJ, Seller EW, Wolpow JR (2006) The Wadsworth BCI research and development program: at home with BCI. IEEE Trans Neural Syst Rehabil Eng 14(2):229–233

    Article  PubMed  Google Scholar 

  48. Vidal JJ (1973) Toward direct brain-computer communication. Annu Rev Biophys Bioeng 2:157–180

    Article  CAS  PubMed  Google Scholar 

  49. Woldorff MG (1993) Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psycholophysiology 30(1):98–119

    Article  CAS  Google Scholar 

  50. Xu N, Gao XR, Hong B, Miao XB, Gao SK, Yang FH (2004) BCI competition 2003—data set IIb: enhancing P300 wave detection using ICA based subspace projections for BCI applications. IEEE Trans Biomed Eng 51(6):1067–1072

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant National Natural Science Foundation of China, under Grant No. 61074113 and supported by Shanghai Leading Academic Discipline Project, Project Number: B504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Allison, B.Z., Sellers, E.W. et al. Optimized stimulus presentation patterns for an event-related potential EEG-based brain–computer interface. Med Biol Eng Comput 49, 181–191 (2011). https://doi.org/10.1007/s11517-010-0689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0689-8

Keywords

Navigation