Skip to main content

Advertisement

Log in

A hybrid strategy to integrate surface-based and mutual-information-based methods for co-registering brain SPECT and MR images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Co-registration of brain SPECT and MR images has been used extensively in clinical applications. The complementary features of two major co-registration methods—surface- and mutual-information-based (MI-based)—motivated us to study a hybrid-based scheme that uses the surface-based method to achieve a quick alignment, followed by the MI-based method for fine tuning. Computer simulations were conducted to evaluate the accuracy and robustness of surface-, MI-, and hybrid-based registration methods by designing different levels of noise and mismatch in the registration experiments. Results demonstrated that the hybrid surface-MI-based scheme outperforms both the surface- and MI-based methods in providing superior accuracy and success rates. Specifically, the translational and rotational errors were no more than 1 mm and 2°, respectively, with consistent success rates over 98%. Besides, the hybrid-based method saved 12–53% of the computation efforts, compared with using the MI-based method alone. We recommend the use of hybrid-based method when the orientational differences between the floating and reference images exceed 10°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aubert-Broche B, Grova C, Reilhac A, Evans, AC Collins DL (2006) Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation. In: Larsen R, Nielsen M, Sporring J (eds) 9th International conference on medical image computing and computer assisted intervention (MICCAI), LNCS 4190. Springer, Berlin, pp 330–337

  2. Barnden L, Kwiatek R, Lau Y, Hutton B, Thurfjell L, Pile K, Rowe C (2000) Validation of fully automatic brain SPET to MR co-registration. Eur J Nucl Med 27:147–154

    Article  PubMed  CAS  Google Scholar 

  3. Borgefors G (1986) Distance transformations in digital images. Comput Vis Graph Image Process 34:344–371

    Article  Google Scholar 

  4. Chen H-M, Varshney PK (2003) Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation. IEEE Trans Med Imaging 22:1111–1119

    Article  PubMed  Google Scholar 

  5. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  Google Scholar 

  6. de Munck JC, Verster FC, Dubois EA, Habraken JBA, Boltjes B, Claus JJ, van Herk M (1998) Registration of MR and SPECT without using external fiducial markers. Phys Med Biol 43:1255–1269

    Article  PubMed  Google Scholar 

  7. Eldeib AM, Yamany SM, Farag AA (1999) Multi-modal medical volumes fusion by surface matching. In: Taylor CJ, Colchester ACF (eds) 2nd International conference on medical image computing and computer assisted intervention (MICCAI), LNCS 1679. Springer, Berlin, pp 672–679

  8. Hajnal JV, Saeed N, Soar EJ, Oatridge A, Young IR, Bydder GM (1995) A registration and interpolation procedure for subvoxel matching of serially acquired MR images. J Comput Assist Tomogr 19:289–296

    Article  PubMed  CAS  Google Scholar 

  9. Itti L, Chang L, Mangin JF, Darcourt J, Ernst T (1997) Robust multimodality registration for brain mapping. Hum Brain Mapp 5:3–17

    Article  PubMed  CAS  Google Scholar 

  10. Kadrmas DJ, Frey EC, Tsui BM (1997) Analysis of the reconstructibility and noise properties of scattered photons in 99mTc SPECT. Phys Med Biol 42:2493–2516

    Article  PubMed  CAS  Google Scholar 

  11. Kagadis GC, Delibasis KK, Matsopoulos GK, Mouravliansky NA, Asvestas PA, Nikiforidis GC (2002) A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images. Med Phys 29:201–213

    Article  PubMed  Google Scholar 

  12. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recognit 19:41–47

    Article  Google Scholar 

  13. Koole M, D’Asseler Y, Van Laere K, Van de Walle R, Van de Wiele C, Lemahieu I, Dierckx RA (1999) MRI-SPET and SPET-SPET brain co-registration: evaluation of the performance of eight different algorithms. Nucl Med Commun 20:659–669

    Article  PubMed  CAS  Google Scholar 

  14. Lee J-D, Huang C-H, Weng Y-H, Lin K-J, Chen C-T (2007) An automatic MRI/SPECT registration algorithm using image intensity and anatomical feature as matching characters: application on the evaluation of Parkinson’s disease. Nucl Med Biol 34:447–457

    Article  PubMed  CAS  Google Scholar 

  15. Lee H, Lee J, Kim N, Lyoo IK, Shin YG (2009) Robust and fast shell registration in PET and MR/CT brain images. Comput Biol Med 39:961–977

    Article  PubMed  Google Scholar 

  16. Liao Y-L, Sun Y-N, Guo W-Y, Chou Y-H, Hsieh J-C, Wu Y-T (2007) A comparison between the surface-based and mutual-information-based methods for co-registering SPECT and MR images. In: Proceedings of the 29th IEEE annual international conference of the IEEE Engineering in Medicine and Biology Society, IEEE, New York, pp 868–871

  17. Lohmann G (1998) Volumetric image analysis. Wiley, New York

    Google Scholar 

  18. Lu X, Zhang S, Su H, Chen Y (2008) Mutual information-based multimodal image registration using a novel joint histogram estimation. Comput Med Imaging Graph 32:202–209

    Article  PubMed  Google Scholar 

  19. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  PubMed  CAS  Google Scholar 

  20. Maes F, Vandermeulen D, Suetens P (2003) Medical image registration using mutual information. Proc IEEE 91:1699–1722

    Article  Google Scholar 

  21. Malison RT, Miller EG, Greene R, McCarthy G, Charney DS, Innis RB (1993) Computer-assisted coregistration of multislice SPECT and MR brain images by fixed external fiducials. J Comput Assist Tomogr 17:952–960

    Article  PubMed  CAS  Google Scholar 

  22. Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  23. Pfluger T, Vollmar C, Wismuller A, Dresel S, Berger F, Suntheim P, Leinsinger G, Hahn K (2000) Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-dimensional calculation of error. J Nucl Med 41:1823–1829

    PubMed  CAS  Google Scholar 

  24. Pluim JPW, Maintz JBA, Viergever MA (2000) Interpolation artefacts in mutual information-based image registration. Comput Vis Image Underst 77:211–232

    Article  Google Scholar 

  25. Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  PubMed  Google Scholar 

  26. Pohjonen H, Nikkinen P, Sipilä O, Launes J, Salli E, Salonen O, Karp P, Ylä-Jääski J, Katila T, Liewendahl K (1996) Registration and display of brain SPECT and MRI using external markers. Neuroradiology 38:108–114

    Article  PubMed  CAS  Google Scholar 

  27. Press WH (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  28. Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8:630–632

    Article  Google Scholar 

  29. Rohde GK, Aldroubi A, Healy DM (2009) Interpolation artifacts in sub-pixel image registration. IEEE Trans Image Process 18:333–345

    Article  PubMed  Google Scholar 

  30. Salvado O, Wilson DL (2007) Removal of local and biased global maxima in intensity-based registration. Med Image Anal 11:183–196

    Article  PubMed  Google Scholar 

  31. Seppa M (2008) Continuous sampling in mutual-information registration. IEEE Trans Image Process 17:823–826

    Article  PubMed  Google Scholar 

  32. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–165

    Article  Google Scholar 

  33. Shukla SS, Honeyman JC, Crosson B, Williams CM, Nadeau SE (1992) Method for registering brain SPECT and MR images. J Comput Assist Tomogr 16:966–970

    Article  PubMed  CAS  Google Scholar 

  34. Sinha TK, Cash DM, Weil RJ, Galloway RL, Miga MI (2002) Cortical surface registration using texture mapped point clouds and mutual information. In: Dohi T, Kikinis R (eds) 5th International conference on medical image computing and computer assisted intervention (MICCAI), LNCS 2489. Springer, Berlin, pp 533–540

  35. Sipila O, Nikkinen P, Pohjonen H, Poutanen VP, Visa A, Savolainen S, Katila T, Liewendahl K (1997) Accuracy of a registration procedure for brain SPET and MRI: phantom and simulation studies. Nucl Med Commun 18:517–526

    Article  PubMed  CAS  Google Scholar 

  36. Škerl D, Likar B, Pernus F (2006) A protocol for evaluation of similarity measures for rigid registration. IEEE Trans Med Imaging 25:779–791

    Article  PubMed  Google Scholar 

  37. Slomka PJ, Baum RP (2009) Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 36:S44–S55

    Article  PubMed  Google Scholar 

  38. Soma T, Takaki A, Teraoka S, Ishikawa Y, Murase K, Koizumi K (2008) Behaviors of cost functions in image registration between 201Tl brain tumor single-photon emission computed tomography and magnetic resonance images. Ann Nucl Med 22:825–832

    Article  PubMed  Google Scholar 

  39. Thacker N, Vokurka E, Jackson A (1999) Re-normalised sinc interpolation for rapid reslicing of MRI data. In: ISMRM seventh meeting proceedings, p 181

  40. Thurfjell L, Lau YH, Andersson JL, Hutton BF (2000) Improved efficiency for MRI-SPET registration based on mutual information. Eur J Nucl Med 27:847–856

    Article  PubMed  CAS  Google Scholar 

  41. Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53:R1–R39

    Article  PubMed  CAS  Google Scholar 

  42. Tsao J (2003) Interpolation artifacts in multimodality image registration based on maximization of mutual information. IEEE Trans Med Imaging 22:854–864

    Article  PubMed  Google Scholar 

  43. Vajda I (1989) Theory of statistical inference and information. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  44. Wang YL, Chiang MC, Thompson PM (2005) Mutual information-based 3D surface matching with applications to face recognition and brain mapping. In: Proceedings of the 10th IEEE international conference on computer vision, IEEE Computer Society Press, Los Alamitos, pp 527–534

  45. West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR, Kessler RM, Maciunas RJ (1999) Retrospective intermodality registration techniques for images of the head: surface-based versus volume-based. IEEE Trans Med Imaging 18:144–150

    Article  PubMed  CAS  Google Scholar 

  46. Wong JC, Studholme C, Hawkes DJ, Maisey MN (1997) Evaluation of the limits of visual detection of image misregistration in a brain fluorine-18 fluorodeoxyglucose PET-MRI study. Eur J Nucl Med 24:642–650

    PubMed  CAS  Google Scholar 

  47. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13:841–847

    Article  Google Scholar 

  48. Yokoi T, Soma T, Shinohara H, Matsuda H (2004) Accuracy and reproducibility of co-registration techniques based on mutual information and normalized mutual information for MRI and SPECT brain images. Ann Nucl Med 18:659–667

    Article  PubMed  Google Scholar 

  49. Zaidi H, Montandon M-L, Alavi A (2008) The clinical role of fusion imaging using PET, CT, and MR imaging. PET Clin 3:275–291

    Article  Google Scholar 

  50. Zhu YM, Cochoff SM (2002) Influence of implementation parameters on registration of MR and SPECT brain images by maximization of mutual information. J Nucl Med 43:160–166

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to Dr. Berengere Aubert-Broche for providing a series of synthetic images, and Shih-Pei Chen for his help on data acquisition and comments. Our gratitude also goes to Jaya Ramchandani for his assistance in English language editing. This study was partially supported by the Taipei Veterans General Hospital (V96 ER1-005), and the National Science Council of Taiwan (NSC 95-2752-B-075-001-PAE, NSC 95-2752-B-010-006-PAE, NSC 96-2752-B-075-001-PAE, NSC 96-2752-B-010-006-PAE, NSC 97-2752-B-075-001-PAE, NSC 97-2752-B-010-001-PAE, NSC 98-2752-B-075-001-PAE, and NSC 98-2752-B-010-001-PAE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Nien Sun or Yu-Te Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, YL., Sun, YN., Guo, WY. et al. A hybrid strategy to integrate surface-based and mutual-information-based methods for co-registering brain SPECT and MR images. Med Biol Eng Comput 49, 671–685 (2011). https://doi.org/10.1007/s11517-010-0724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0724-9

Keywords

Navigation