Skip to main content

Advertisement

Log in

Adapted filter banks for feature extraction in transcranial magnetic stimulation evoked responses

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A novel adaptive and approximate shift-invariant wavelet packet feature extraction scheme for event-related potentials (ERPs) in the electroencephalogram (EEG) is introduced in this paper. In this algorithm, the shift-invariant wavelet packed decomposition is done by integrating a cost function for decimation decision in each sub-band expansion. Additionally, a shape adaptation of the wavelet is implemented to find the best adapted wavelet shape for a given class of ERPs. This scheme is used to analyze the time course of the impact of single-pulse transcranial magnetic stimulation (TMS) to the auditory ERPs. We show that the proposed scheme is able to extract even slightest impacts of TMS, making it a promising tool for the extraction of weak ERPs components, particularly in hybrid TMS–EEG/ERP setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ataee P, Yazdani A, Setarehdan S, Noubari HA (2007) Manifold learning applied on eeg signal of the epileptic patients for detection of normal and pre-seizure states. Conf Proc IEEE Eng Med Biol Soc 2007:5489–5492

    CAS  PubMed  Google Scholar 

  2. Barbarossa S, Parodi L (1995) Tree-structured wavelet decomposition based on the maximization of fisher’s distance. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, vol 4. pp 2523–2526

  3. Barker AT, Freeston IL, Jalinous R, Jarratt JA (1987) Magnetic stimulation of the human brain and peripheral nervous system: an introduction and result of an initial clinical evaluation. Neurosurgery 20:100–109

    Article  CAS  PubMed  Google Scholar 

  4. Begic D, Mahnik-Milos M, Grubisin J (2009) Eeg characteristics in depression, “negative” and “positive" schizophrena. Psychiatr Danub 21(4):579–584

    PubMed  Google Scholar 

  5. Besthorn C, Zerfass R, GeigerKabisch C, Sattel H, Daniel S, SchreiterGasser U, Forstl H (1997) Discrimination of alzheimer’s disease and normal aging by eeg data. Electroencephalogr Clin Neurophysiol 103(2):241–248

    Article  CAS  PubMed  Google Scholar 

  6. Beylkin G (1992) On the representation of operators in bases of compactly supported wavelets. In: SIAM journal of numeric analysis, vol 6, pp 1716–1740

  7. Cohen I, Raz S, Malah D (1995) Shift invariant wavelet packet bases. In: IEEE Proceedings of international conference on acoustics, speech, signal processing, Detroit, MI, vol 4, pp 1080–1084

  8. Coifman RR, Donoho D (1995) Translation invariant de-noising. In: Antoniadis A (ed) Wavelet in statistics, lecture notes. Springer Verlag, New York, pp 125–150

    Google Scholar 

  9. Coifman RR, Wickerhauser MV (1992) Entropy based algorithms for best basis selection. IEEE Trans Inf Theory 32:712–718

    Google Scholar 

  10. Cvetković Z, Vetterli M (1998) Oversampled filter banks. IEEE Trans Signal Process 46:1245–1255

    Article  Google Scholar 

  11. D’Alessandro M, Vachtsevanos G, Esteller R, Echauz J, Cranstoun S, Worrell G, Parish L, Litt B (2005) A multi-feature and multi-channel univariate selection process for seizure prediction. Clin Neurophysiol 116(3):506–516

    Article  PubMed  Google Scholar 

  12. Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia, PA

    Google Scholar 

  13. Delb W, Strauss DJ, Plinkert KP (2004) A time–frequency feature extraction scheme for the automated detection of binaural interaction in auditory brainstem responses. Int J Audiol 43:69–78

    Article  PubMed  Google Scholar 

  14. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, NY

    Google Scholar 

  15. Guger C, Schlogl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G (2001) Rapid prototyping of an eeg-based brain–computer interface (bci). IEEE Trans Neural Syst Rehabil Eng 9(1):49–58

    Article  CAS  PubMed  Google Scholar 

  16. Haeusler UHL, Lutzenberger W, Birbaumer N (1995) Simultaneous recording of slow brain potentials and transcranial magnetic stimulation of hand area in human motor cortex. Neurosci Lett 200:183–186

    Article  CAS  Google Scholar 

  17. Halder S, Rea M, Andreoni R, Nijboer F, Hammer EM, Kleih SC, Birbaumer N, Kubler A (2010) An auditory oddball brain–computer interface for binary choices. Clin Neurophysiol 121(4):516–523

    Article  CAS  PubMed  Google Scholar 

  18. Harris AR, Schwerdtfeger K, Luszpinski M, Sandvoss G, Strauss DJ (2007) Adaptive time–scale feature extraction in electroencephalographic responses to transcranial magnetic stimulation. In: Proceedings of 29th annual international conference of the IEEE EMBS 2007, pp 2835–2838

  19. Harris AR, Schwerdtfeger K, Strauss DJ (2008) Shift-invariant wavelet features extraction for eeg evoked responses. In: Proceedings of 30th annual international conference of the IEEE EMBS 2008

  20. Hild KE, Nagarajan SS (2009) Source localization of eeg/meg data by correlating columns of ica and lead field matrices. IEEE Trans Biomed Eng 56(11):2619–2626

    Article  PubMed  Google Scholar 

  21. Ilmoniemi RJ, Kicic D (2010) Methodology for combined tms and eeg. Brain Topogr 22(4):233–248

    Article  PubMed  Google Scholar 

  22. Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005) Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65(3):466–468

    Article  PubMed  Google Scholar 

  23. Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Hamdy A (2006) Effect of daily repetitive transcranial magnetic stimulation on motor performance in parkinson’s disease. Mov Disord 21(12):2201–2205

    Article  PubMed  Google Scholar 

  24. Kingsbury NG (2001) Complex wavelets for shift invariant analysis and filtering of signals. J Appl Comput Harmonic Anal 10:234–253

    Article  Google Scholar 

  25. Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund LO, Dodge Y, Dierks T (2007) Application and comparison of classification algorithms for recognition of alzheimer’s disease in electrical brain activity (eeg). J Neurosci Methods 161(2):342–350

    Article  PubMed  Google Scholar 

  26. Liang J, Parks TW (1996) A translation-invariant wavelet representation algorithm with applications. IEEE Trans Signal Process 44:225–232

    Article  Google Scholar 

  27. Low YF, Trenado C, Delb W, Corona-Strauss FI, Strauss DJ (2007) The role of attention in the tinnitus decompensation: reinforcement of a large-scale neural decompensation measure. In: Proceedings of the 29th annual international conference of the IEEE EMBS, Lyon, France, pp 2485–2488

  28. Neumann J (2004) Adaptive conjoint wavelet-support vector classifiers. PhD thesis, University of Mannheim, Mannheim, Germany

  29. Pesquet JC, Krim H, Carfantan H (1996) Time-invariant orthonormal wavelet representations. IEEE Trans Signal Process 44:1964–1970

    Article  Google Scholar 

  30. Ramoser H, Müller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial eeg during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446

    Article  CAS  PubMed  Google Scholar 

  31. Saito N, Coifman RR (1995) Local discriminant bases and their applications. J Math Imaging Vis 4:337–358

    Article  Google Scholar 

  32. Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV (2006) A high-performance brain–computer interface. Nature 442(7099):195–198

    Article  CAS  PubMed  Google Scholar 

  33. Simoncelli EP, Freeman WT, Adelson EH, Hegger DJ (1992) Shiftable multiscale transforms. IEEE Trans Inf Theory 38:587–608

    Article  Google Scholar 

  34. Sole-Casals J, Vialatte F, Chen Z, Cichocki A (2008) Investigation of ica algorithms for feature extraction of eeg signals in discrimination of alzheimer disease. In: Biosignals 2008: proceedings of the first international conference on bio-inspired systems and signal processing, vol 1, pp 232–235

  35. Strang G, Nguyen T (1996) Wavelets and filter banks. Wellesley–Cambridge Press, Wellesley, MA

    Google Scholar 

  36. Strauss DJ, Steidl G, Delb W (2003) Feature extraction by shape-adapted local discriminant bases. Signal Process 83:359–376

    Article  Google Scholar 

  37. Subasi A (2007) Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput Biol Med 37(2):227–244

    Article  PubMed  Google Scholar 

  38. Taswell C (1996) Satisficing search algorithms for selecting near-best bases in adaptive tree-structured wavelet transform. IEEE Trans Signal Process 44:2423–2438

    Article  Google Scholar 

  39. Tzallas A, Tsipouras M, Fotiadis D (2009) Epileptic seizure detection in electroencephalograms using time–frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    Article  PubMed  Google Scholar 

  40. Ubeyli ED, Cvetkovic D, Cosic I (2008) Ar spectral analysis technique for human ppg, ecg and eeg signals. J Med Syst 32(3):201–206

    Article  PubMed  Google Scholar 

  41. Vaidyanathan PP (1993) Multirate systems and filter banks. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Strauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, A.R., Schwerdtfeger, K. & Strauss, D.J. Adapted filter banks for feature extraction in transcranial magnetic stimulation evoked responses. Med Biol Eng Comput 49, 221–231 (2011). https://doi.org/10.1007/s11517-010-0726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0726-7

Keywords

Navigation