Skip to main content
Log in

Characterization of cellular elastic modulus using structure based double layer model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The mechanical characterization of cells is important for understanding cellular behavior and physiological functions. We used atomic force microscopy (AFM) to obtain a force–displacement curve and estimate the elastic modulus of hepatocellular carcinoma cells (HEP-G2) utilizing both linear Hertz–Sneddon (HS) and non-linear elastic models. In order to overcome the limitations of HS model, which assumes a linear homogeneous cell body, a cell is modeled as a double-layered body with an outer cytoplasmic layer made mostly of interconnected fibers of cytoskeleton proteins and a nucleus. By disrupting all cytoskeletal protein networks, we estimate the elastic modulus of the core nucleus using FEM for a single ellipsoid. Based on the nucleic modulus and cellular dimensions found by 3D confocal imaging, we develop a novel double-layered cellular (DLC) finite element model. The DLC model provides a more reliable estimate of the elastic modulus of the cell than conventionally used HS model and correlates closely with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DLC:

Double-layered cell

SLC:

Single-layered cell

HS:

Hertz–Sneddon

VBL:

Vinblastine

CD:

Cytochalasin D

OA:

Okadaic acid

VOC:

Vinblastine/okadaic acid/cytochalasin D

CK18:

Cytokeratin 18

MT:

Microtubule

IF:

Intermediate filament

References

  1. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nano 2:780–783

    Article  CAS  Google Scholar 

  2. Wu ZZ, Zhang G, Long M, Wang HB, Song GB, Cai SX (2000) Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biorheology 37:279–290

    PubMed  CAS  Google Scholar 

  3. Zhang G, Long M, Wu ZZ, Yu WQ (2002) Mechanical properties of hepatocellular carcinoma cells. World J Gastroenterol 8:243–246

    PubMed  Google Scholar 

  4. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160

    Article  PubMed  CAS  Google Scholar 

  5. Costa KD (2003) Single-cell elastography: probing for disease with the atomic force microscope. Dis Markers 19:139–154

    PubMed  Google Scholar 

  6. Chen JX, Fabry B, Schiffrin EL, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280:C1475–C1484

    PubMed  CAS  Google Scholar 

  7. Puig-De-Morales M, Grabulosa M, Alcaraz J, Mullol J, Maksym GN, Fredberg JJ, Navajas D (2001) Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol 91:1152–1159

    PubMed  CAS  Google Scholar 

  8. Hochmuth RM, Worthy PR, Evans EA (1979) Red cell extensional recovery and the determination of membrane viscosity. Biophys J 26:101–114

    Article  PubMed  CAS  Google Scholar 

  9. Chien S, Sung KL (1984) Effect of colchicine on viscoelastic properties of neutrophils. Biophys J 46:383–386

    Article  PubMed  CAS  Google Scholar 

  10. Shao JY (2002) Finite element analysis of imposing Femtonewton forces with micropipette aspiration. Ann Biomed Eng 30:546–554

    Article  PubMed  Google Scholar 

  11. Schmid-Schonbein GW, Sung KL, Tozeren H, Skalak R, Chien S (1981) Passive mechanical properties of human leukocytes. Biophys J 36:243–256

    Article  PubMed  CAS  Google Scholar 

  12. Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol 73:327–335

    Article  PubMed  CAS  Google Scholar 

  13. Ethier CR, Simmons CA (2007) Introductory biomechanics: from cells to organisms. Cambridge University Press, Cambridge, New York

    Google Scholar 

  14. Goldmann WH, Ezzell RM (1996) Viscoelasticity in wild-type and vinculin-deficient embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp Cell Res 226:234–237

    Article  PubMed  CAS  Google Scholar 

  15. Shroff SG, Saner DR, Lal R (1995) Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic-force microscopy. Am J Physiol Cell Physiol 38:C286–C292

    Google Scholar 

  16. Lanero TS, Cavalleri O, Krol S, Rolandi R, Gliozzi A (2006) Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. J Biotechnol 124:723–731

    Article  Google Scholar 

  17. Berdyyeva TK, Woodworth CD, Sokolov I (2005) Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys Med Biol 50:81–92

    Article  PubMed  Google Scholar 

  18. Ikai A, Afrin R (2003) Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope—an invited review. Cell Biochem Biophys 39:257–277

    Article  PubMed  CAS  Google Scholar 

  19. Costa KD, Sim AJ, Yin FCP (2006) Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng 128(2):176–184

    Article  PubMed  Google Scholar 

  20. Unnikrishnan GU, Unnikirishnan VU, Reddy JN (2007) Constitutive material modeling of cell: a micromechanics approach. J Biomech Eng Trans ASME 129:315–323

    Article  CAS  Google Scholar 

  21. Kamgoue A, Ohayon J, Tracqui P (2007) Estimation of cell young’s modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion. J Biomech Eng Trans ASME 129:523–530

    Article  Google Scholar 

  22. Caille N, Thoumine O, Tardy Y, Meister JJ (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187

    Article  PubMed  Google Scholar 

  23. Dong C, Skalak R, Sung KL (1991) Cytoplasmic rheology of passive neutrophils. Biorheology 28:557–567

    PubMed  CAS  Google Scholar 

  24. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    Article  PubMed  CAS  Google Scholar 

  25. Vaziri A, Lee H, Mofrad MRK (2006) Deformation of the cell nucleus under indentation: mechanics and mechanisms. J Mater Res 21:2126–2135

    Article  CAS  Google Scholar 

  26. Radmacher M (1997) Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag 16:47–57

    Article  PubMed  CAS  Google Scholar 

  27. Mahaffy RE, Shih CK, Mackintosh FC, Kas J (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85:880–883

    Article  PubMed  CAS  Google Scholar 

  28. Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34:1545–1553

    Article  PubMed  CAS  Google Scholar 

  29. Costa KD, Yin FCP (1999) Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng Trans ASME 121:462–471

    Article  CAS  Google Scholar 

  30. Hertz H (1882) U¨ ber Die beru¨hrung fester elastischer ko¨rper. J Reine Angew Math 92:156–171

    Article  Google Scholar 

  31. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  Google Scholar 

  32. Ottensmeyer MP (2001) Minimally invasive instrument for in vivo measurement of solid organ mechanical impedance. PhD Thesis. Massachusetts Institute of Technology, Boston, USA

  33. Charras GT, Lehenkari PP, Horton MA (2001) Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86:85–95

    Article  PubMed  CAS  Google Scholar 

  34. Jones WR, Ting-Beall PT, Lee GM, Kelly SS, Hochmuth RM, Guilak F (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32:119–127

    Article  PubMed  CAS  Google Scholar 

  35. Trickey WR, Baaijens FPT, Laursen TA, Alexopoulos LG, Guilak F (2006) Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J Biomech 39:78–87

    Article  PubMed  Google Scholar 

  36. Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci USA 96:921–926

    Article  PubMed  CAS  Google Scholar 

  37. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  PubMed  CAS  Google Scholar 

  38. Mor JJ (1977) The Levenberg-Marquardt algorithm: implementation and analysis. Springer, Berlin

    Google Scholar 

  39. Zhao R, Wyss K, Simmons CA (2009) Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. J Biomech 42:2768–2773

    Article  PubMed  Google Scholar 

  40. Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679

    Article  PubMed  CAS  Google Scholar 

  41. Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253–258

    Article  PubMed  CAS  Google Scholar 

  42. Fiorentini C, Matarrese P, Fattorossi A, Donelli G (1996) Okadaic acid induces changes in the organization of F-actin in intestinal cells. Toxicon 34:937–945

    Article  PubMed  CAS  Google Scholar 

  43. Blankson H, Holen I, Seglen PO (1995) Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acid. Exp Cell Res 218:522–530

    Article  PubMed  CAS  Google Scholar 

  44. Gardel ML, Shin JH, Mackintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305

    Article  PubMed  CAS  Google Scholar 

  45. Crocker JC, Hoffman BD (2007) Multiple-particle tracking and two-point microrheology in cells. Cell Mech 83:141–178

    Article  CAS  Google Scholar 

  46. Kazutaka T, Takehito T, Ryusuke M, Ichiro N, Takuro M, Aiji O (2006) Human erythrocytes possess a cytoplasmic endoskeleton containing β-actin and neurofilament protein. Arch Histol Cytol 69:329–340

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Fundamental Research Project that were distributed by the Korean Institute of Machinery and Materials and Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0022871). The authors are grateful to Jungwoo Hong, Bummo Ahn, and Jinsung Hong from the Soft Biomechanics and Biomaterials Laboratory and Biorobotics Laboratory of KAIST for cell preparation and for their enthusiastic discussion and help. In addition, we thank Dr. Junhee Lee, Dr. Shin Huh, and Dr. Wandu Kim from the Nanotechnology Research Team of KIMM for their technical assistance with AFM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer H. Shin or Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kim, M., Shin, J.H. et al. Characterization of cellular elastic modulus using structure based double layer model. Med Biol Eng Comput 49, 453–462 (2011). https://doi.org/10.1007/s11517-010-0730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0730-y

Keywords

Navigation