Skip to main content
Log in

Airflow analysis in the alveolar region using the lattice-Boltzmann method

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A validated lattice-Boltzmann code has been developed based on the Bhatnagar–Gross–Krook formulation to simulate and analyze transient laminar two-dimensional airflow in alveoli and bifurcating alveolated ducts with moving walls, representative of the human respiratory zone. A physically more realistic pressure boundary condition has been implemented, considering a physiological Reynolds number range, i.e., 0 < Re < 11, which covers the inhalation scenarios from resting mode to moderate exercise. Axial velocity contours, vortex propagation, and streamlines as well as mid-plane pressure variations in different alveolar geometries and shapes are illustrated and discussed. The results show that the influence of the geometric structure on the airflow fields in the human alveolar region is very important. Furthermore, the effect of a moving alveolus wall is significant, i.e., the vortices in the duct or alveolar sacs may change in size. In summary, for a given set of realistic inlet conditions, the airflow velocity and vortical flows are greatly dependent on the different alveolar sac shapes, local geometric structures, and sac expansion rates. The pressure distributions are less influenced by the alveolus shape and wall movement. The present results provide new physical insight and are important for the simulation of particle transport/deposition in the deep lung region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Artoli AM, Kandhai D, Hoefsloot HCJ, Hoekstra AG, Sloot PMA (2004) Lattice BGK simulations of flow in a symmetric bifurcation. Future Gener Comput Syst 20:909–916

    Article  Google Scholar 

  2. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  3. Boyd J, Buick J, Cosgrove JA, Stansell P (2005) Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery. Phys Med Biol 50:4783–4796

    Article  PubMed  CAS  Google Scholar 

  4. Chen S, Martinez D, Mei R (1996) On boundary conditions in lattice Boltzmann methods. Phys Fluids 8:2527–2536

    Article  CAS  Google Scholar 

  5. Currie IG (1974) Fundamental mechanics of fluids. McGraw-Hill, New York

    Google Scholar 

  6. Darquenne C, Paiva M (1996) Two- and there-dimensional simulations of aerosol transport and deposition in alveolar zone of human lung. J Appl Physiol 80:1401–1414

    PubMed  CAS  Google Scholar 

  7. Federspiel WJ, Fredberg JJ (1988) Axial dispersion in respiratory bronchioles and alveolar ducts. J Appl Physiol 64:2614–2621

    PubMed  CAS  Google Scholar 

  8. Felici M, Filoche M, Straus C, Similowski T, Sapoval B (2005) Diffusional screening in real 3D human acini-a theoretical study. Resp Physiol Neurobiol 145:279–293

    Article  CAS  Google Scholar 

  9. Filippova O, Hänel D (1998) Grid refinement for lattice-BGK model. J Comput Phys 147:219–238

    Article  Google Scholar 

  10. Filoche M, Moreira AA, Andrade JS, Sapovall B (2008) Quantitative analysis of the oxygen transfer in the human acinus. Adv Exp Med Biol 605:167–172

    Article  PubMed  Google Scholar 

  11. Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols. Academic Press, San Diego

    Google Scholar 

  12. Fox SI (1996) Human physiology. Wm C. Brown Publishers, Boston

    Google Scholar 

  13. Freitas RK, Schröder W (2008) Numerical investigation of the three-dimensional flow in a human lung model. J Biomech 41:2446–2457

    Article  PubMed  Google Scholar 

  14. Haber S, Yitzhak D, Tsuda A (2003) Gravitational deposition in a rhythmically expanding and contracting alveolus. J Appl Physiol 95:657–671

    PubMed  CAS  Google Scholar 

  15. Haefeli-Bleuer B, Weibel ER (1988) Morphometry of the human pulmonary acinus. Anat Rec 230:401–414

    Article  Google Scholar 

  16. Horsfield K, Dart G, Olson DE (1971) Models of the human bronchial tree. J Appl Physiol 21:207–217

    Google Scholar 

  17. Karl A, Henry FS, Tsuda A (2004) Low Reynolds number viscous flow in an alveolated duct. ASME J 126:420–429

    Article  Google Scholar 

  18. Kitaoka H, Tamura S, Takaki R (2000) A three-dimensional model of the human pulmonary acinus. J Appl Physiol 88:2360–2368

    Google Scholar 

  19. Li Z (2007) Airflow and micro-particle transport and deposition in realistic lung airways including the alveolar region. Ph.D. dissertation, MAE Department, NC State University, Raleigh

  20. Li Z, Kleinstreuer C, Zhang Z (2007) Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. J Aerosol Sci 38:625–644

    Article  Google Scholar 

  21. Mei R, Luo LS, Wei S (1999) An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys 155:307–330

    Article  CAS  Google Scholar 

  22. Nourgaliev RR, Dinh TN, Theofanous TG, Joseph D (2003) The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Int J Multiph Flow 29:117–169

    Article  CAS  Google Scholar 

  23. Saint-Raymond L (2003) From the BGK model to the Navier–Stokes equations. Ann Sci Ecole Norm S 36:271–317

    Google Scholar 

  24. Smith FT (1978) Flow through symmetrically constricted tubes. J Inst Math Appl 21:145–156

    Article  Google Scholar 

  25. Sturm R, Hofmann W (2004) Stochastic simulation of alveolar particle deposition in lungs affected by different types of emphysema. J Aerosol Med 17:357–372

    Article  PubMed  CAS  Google Scholar 

  26. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford

  27. Sznitman J (2009) Convective gas transport in the pulmonary acinus: comparing roles of convective and diffusive lengths. J Biomech 42:789–792

    Article  PubMed  Google Scholar 

  28. Tsuda A, Butler JP, Fredberg JJ (1994) Effects of alveolated duct structure on aerosol kinetics I. Diffusional deposition in the absence of gravity. J Appl Physiol 76:2497–2509

    PubMed  CAS  Google Scholar 

  29. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    PubMed  CAS  Google Scholar 

  30. Gillis R, Brice G, Hoar K Department of Biology, University of Wisconsin—La Crosse. http://bioweb.uwlax.edu/aplab/Table_of_Contents/Lab_14/Alveolar_Sac/alveolar_sac.html

  31. Zhang Z, Kleinstreuer C, Donohue JF, Kim CS (2005) Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36:211–233

    Article  CAS  Google Scholar 

  32. Zhu J (1995) The second-order projection method for the backward-facing step flow. J Comput Phys 117:318–331

    Article  Google Scholar 

  33. Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9:1591–1598

    Article  CAS  Google Scholar 

  34. Zou Q, Hou S, Chen S, Doolen GD (1995) An improved incompressible lattice Boltzmann model for time-independent flows. J Stat Phys 81:35–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kleinstreuer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Kleinstreuer, C. Airflow analysis in the alveolar region using the lattice-Boltzmann method. Med Biol Eng Comput 49, 441–451 (2011). https://doi.org/10.1007/s11517-011-0743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0743-1

Keywords

Navigation