Skip to main content

Advertisement

Log in

Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Fusionless growth-sparing implants for the treatment of adolescent idiopathic scoliosis (AIS) attempt to manipulate vertebral growth to restore spinal alignment. This study critically explores different implants utilizing a human spine scoliotic finite element model (FEM). Stainless steel (SS) and shape memory alloy (SMA) staples and flexible tethers were modeled and alternatively integrated around the apex of the convexity of the scoliotic model. Stress profiles over vertebral growth plates were obtained. Two years of growth was simulated with non-instrumented and instrumented models, as curvature changes were quantified. Apical asymmetrical stresses in non-instrumented and instrumented scoliotic models with SS staple, flexible tether, and SMA staple were 0.48, 0.48, 0.23, and 0.33 MPa, respectively. Patient data and non-instrumented model progressed from 28° to 62° of thoracic Cobb angle over 2 years. Simulated projected long-term thoracic Cobb angles of instrumented models are 31° with SS staple, 31° with flexible tether, and 34° with SMA staple. Initial implant compression achieved during instrumentation provided a significant influence on initial and long-term spinal profiles. The developed FEM provides an effective platform with which to explore, critique, and enhance fusionless growth-sparing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams M, Hutton W (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 62(3):358–362

    PubMed  CAS  Google Scholar 

  2. Betz R, Andrea L, Mulcahey M, Chafetz R (2005) Vertebral body stapling procedure for the treatment of scoliosis in the growing child. Clin Orthop Relat Res 434:55–60

    Article  PubMed  Google Scholar 

  3. Braun J, Akyuz E, Ogilvie J, Bachus K (2005) The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis. J Bone Joint Surg Am 87(9):2038–2051

    Article  PubMed  Google Scholar 

  4. Braun J, Hunt K, Sorenson S, Ogilvie J (2007) Can fusionless scoliosis surgery reverse the Hueter-Volmann effect? In: 42nd annual meeting scoliosis research society, Edinburg, Scotland

  5. Charles Y, Daures J, de Rosa V, Dimeglio A (2006) Progression risk of idiopathic juvenile scoliosis during pubertal growth. Spine 31(17):1933–1942

    Article  PubMed  Google Scholar 

  6. Delorme S, Petit Y, de Guise J, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50(8):989–998

    Article  PubMed  CAS  Google Scholar 

  7. Dolan L, Weinstein S (2007) Surgical rates after observation and bracing for adolescent idiopathic scoliosis: an evidence-based review. Spine 32(19S):91–100

    Article  Google Scholar 

  8. Driscoll M, Aubin CE, Moreau A, Villemure I, Parent S (2009) The role of concave–convex biases in the progression of idiopathic scoliosis. Eur Spine J 18:180–187

    Article  PubMed  Google Scholar 

  9. Edwards T, Zheng Y, Ferrara L, Yuan H (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26(2):218–225

    Article  PubMed  CAS  Google Scholar 

  10. Hunt H, Braun J, Christensen B (2007) The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc. In: 42nd Annual meeting scoliosis research society, Edinburgh, Scotland

  11. Huynh AM, Aubin CE, Mathieu P, Labelle H (2007) Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscle and vertebral growth modulation. Clin Biomech 22:392–399

    Article  CAS  Google Scholar 

  12. Huynh AM, Aubin CE, Rajwani T, Bagnall K, Villemure I (2007) Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 16:523–529

    Article  PubMed  Google Scholar 

  13. Lalonde N, Villemure I, Pannetier R, Parent S, Aubin CE (2010) Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clin Biomech 25(6):510–516

    Article  CAS  Google Scholar 

  14. Lin H, Aubin CE, Parent S, Villemure I (2009) Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches. Med Biol Eng Comput 47(4):957–966

    Article  Google Scholar 

  15. Little D, Song K, Katz D, Herring J (2000) Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls. J Bone Joint Surg 82(5):685–693

    PubMed  CAS  Google Scholar 

  16. Mehlman C, Araghi A, Roy D (1997) Hyphenated history: the Hueter-Volkmann law. Am J Orthop 26:798–800

    PubMed  CAS  Google Scholar 

  17. Meir A, Fairbank J, Jones D, McNally D, Urban J (2007) High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis 2:article 4

    Article  Google Scholar 

  18. Mente P, Aronsson D, Stokes I, Iatridis J (1999) Mechanical modulation of growth for the correction of vertebral wedge deformities. J Orthop Res 17:518–524

    Article  PubMed  CAS  Google Scholar 

  19. Moreau A, Franco A, Azedine B, Rompre P, Turgeon I, Bagnall K, Poitras B, Labelle H, Rivard C, Grimard G, Ouellet J, Parent S, Larouche G, Lacroix G (2008) Elevated plasma factor P is involved in AIS onset and curve progression. In: SRS 43rd annual meeting scoliosis research society, Salt Lake City

  20. Moreau A, Wang D, Forget S, Azeddine B, Angeloni D, Fraschini F, Labelle H, Poitras B, Rivard C, Grimard G (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine 29(16):1772–1781

    Article  PubMed  Google Scholar 

  21. Newton P, Farnsworth C, Faro F, Mahar A, Odell T, Mohamad F, Breisch E, Fricka K, Upasani W, Amiel D (2008) Spinal growth modulation with an anterolateral flexible tether in an immature bovine model. Spine 23(7):724–733

    Article  Google Scholar 

  22. Polikeit A, Ferguson S, Nolte L, Orr T (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12:413–420

    Article  PubMed  Google Scholar 

  23. Price J, Oyajobi B, Russell R (1994) The cell biology of bone growth. Eur J Clin Nutr 48(Suppl 1):131–149

    Google Scholar 

  24. Roberts S, Menage J, Urban J (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14(2):166–174

    Article  PubMed  CAS  Google Scholar 

  25. Sarwark J, Aubin CE (2007) Growth considerations of the immature spine. J Bone Joint Surg Am 89(Suppl 1):8–13

    Article  PubMed  Google Scholar 

  26. Schmid E, Aubin CE, Moreau A, Sarwark J, Parent S (2008) A novel fusionless vertebral physeal device inducing spinal growth modulation for the correction of spinal deformities. Eur Spine J 17(10):1329–1335

    Article  PubMed  Google Scholar 

  27. Schultz A, Andersson G, Ortengren R, Nachemson A (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurement of intradiscal pressures and myoelectric signals. J Bone Joint Surg 64(5):713–720

    PubMed  CAS  Google Scholar 

  28. Shirazi-Adl A, Shivastava S, Ahmed A (1984) Stress analysis of the lumbar disc-body unit in compression: a three dimensional nonlinear finite element study. Spine 9(2):120–134

    Article  PubMed  CAS  Google Scholar 

  29. Stokes I (2007) Analysis and simulation of progressive adolescent scoliosis by biomechanical growth simulation. Eur Spine J 16:1621–1628

    Article  PubMed  Google Scholar 

  30. Stokes I, Aronsson D, Dimock A, Cortright V, Beck S et al (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 10:1327–1333

    Article  Google Scholar 

  31. Stokes I, Gardner-Morse M (2004) Muscle activation strategies and symmetry of spinal loading in the lombar spine with scoliosis. Spine 29(19):2103–2107

    Article  PubMed  Google Scholar 

  32. Stokes I, Spence H, Aronsson D, Kilmer N (1996) Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine 21:1161–1167

    Google Scholar 

  33. Sylvestre PL, Villemure I, Aubin CE (2007) Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput 45(10):977–988

    Article  PubMed  Google Scholar 

  34. Tremblay M (2004) Caractérisation expérimentale de la modulation de croissance vertébrale à l’aide d’agrafes à mémoire de forme pour la correction de la scoliose idiopathique: étude de faisabilité. Master thesis, École Polytechnique de Montréal

  35. Villemure I, Aubin CE, Dansereau J (2002) Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth. J Biomed Eng 124:784–790

    CAS  Google Scholar 

  36. Villemure I, Aubin CE, Grimard G, Dansereau J, Labelle H (2001) Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study. Spine 26(20):2244–2250

    Article  PubMed  CAS  Google Scholar 

  37. Wall E, Bylski-Austrow D, Kolata R, Crawford A (2005) Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine 30(10):1148–1153

    Article  PubMed  Google Scholar 

  38. Wilke H, Neef P, Caimi M, Hoogland T, Claes L (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24(8):755–762

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funded by the Natural Sciences and Engineering Research Council of Canada (Industrial Research Chair Program with Medtronic of Canada) and the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Eric Aubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driscoll, M., Aubin, CE., Moreau, A. et al. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis. Med Biol Eng Comput 49, 1437–1445 (2011). https://doi.org/10.1007/s11517-011-0801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0801-8

Keywords

Navigation