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Abstract In this article, we propose a new method for

providing assistance during cyclical movements. This

method is trajectory-free, in the sense that it provides user

assistance irrespective of the performed movement, and

requires no other sensing than the assisting robot’s own

encoders. The approach is based on adaptive oscillators,

i.e., mathematical tools that are capable of learning the

high level features (frequency, envelope, etc.) of a periodic

input signal. Here we present two experiments that we

recently conducted to validate our approach: a simple

sinusoidal movement of the elbow, that we designed as a

proof-of-concept, and a walking experiment. In both cases,

we collected evidence illustrating that our approach indeed

assisted healthy subjects during movement execution.

Owing to the intrinsic periodicity of daily life movements

involving the lower-limbs, we postulate that our approach

holds promise for the design of innovative rehabilitation

and assistance protocols for the lower-limb, requiring little

to no user-specific calibration.

Keywords Adaptive oscillator � Assistance � EMG �
Exoskeleton � Metabolic cost � Walking

1 Introduction

In modern robotics research, a lot of attention is devoted to

service applications, with the general objective to improve

the human daily life [39]. In particular, assistive and

rehabilitation robots have been proposed as an innovative

mean to improve the condition of people affected by

chronic or momentary movement disabilities [9, 13].

Assistive and rehabilitation robots have different goals.

The former aims at assisting people affected by chronic

movement disorders or neural lesions by providing con-

tinuous support giving extra power [20] or increasing

movement accuracy [32]. On the other hand, the latter aims

to retrain the nervous system and/or the musculoskeletal

apparatus of the patient to restore his/her normal movement

ability [27, 45].

Despite of having different objectives, human-robot

interfacing is a critical issue for both assistive and rehabil-

itation robotics. The human-robot interface is indeed

responsible for both power transfer and information trans-

mission. More in detail, the human-robot physical interface

is intended to provide a safe and comfortable interaction

while transferring power between the two agents. Ergo-

nomics studies [41] provide the main design guidelines for

these interfaces, which are particularly critical in the case of

wearable robots [7], due to the close interaction with the

user. The human-robot cognitive interface instead is depu-

ted to the acquisition and transfer of information regarding
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the cognitive involvement of the patient in the task (e.g.,

planning, reasoning, execution of a movement).

In the case of assistive robots, the goal is typically to

amplify the movement initiated by the user, so that the effort

spent by him/her is reduced without losing the control of the

movement. On the contrary, rehabilitation robots exploit the

information about the user intention to define the rehabili-

tative task in terms of spatio-temporal movement features.

As such, the active participation of the patient in the task is

promoted, and his/her effort is increased. This rehabilitative

control strategy, commonly referred as ‘‘assist-as-needed’’,

has been proved to be an effective way to increase the

outcome of robot-mediated rehabilitation therapy by pro-

moting motor recovery [1, 11, 12, 45, 54].

In this article, we describe a new approach that we

recently developed to estimate the user’s intended move-

ment while performing a cyclical motion task. This method

can be used for both assistive and rehabilitative purposes.

Unlike other methods previously used to estimate intended

movements, our approach does not rely on inspecting

activations by means of direct interfaces at the level of the

central or peripheral nervous system or by electromyog-

raphy (EMG) [7, 21, 22, 36]. EMG-based control has been

successfully used to reduce the metabolic cost of walking

of a healthy person [38], or to provide full-body daily

assistance [20]. However, EMG recordings suffer from

some drawbacks related to signal stability [6], which leads

to the need of periodic recalibration and may also cause

discomfort to the user over long periods of time (e.g., due

to skin irritation). Our method requires no other sensing

than the encoder of the robot actuators, avoiding the

problems related to sensor placement, user-dependent cal-

ibration, or signal durability and reliability. As a conse-

quence, our method provides both a fast and convenient

integration to the user’s body and an adaptivity to the

user’s intentions which—pending a sound and attractive

ergonomic design—are the major requirements to maxi-

mize the device acceptability for potential users.

To compensate for the ‘‘loss’’ of information that could

have been provided by direct sensing of the user status (e.g.,

EMGs), we embedded some a-priori knowledge about the

movement directly into the controller. In the case of lower-

limb movements, this a-priori knowledge simply consisted

of assuming the movement to be periodic, a hallmark of

daily life activities involving the lower-limbs (walking,

running, stair climbing, etc.). The strategy proposed here

exploits the concept of motor primitives, which emerged

from biology [2, 16] and has now clearly percolated in

robotics [8, 17]. The concept of motor primitives is very

general in neuroscience, since motor primitives were iden-

tified at the cerebral, spinal, muscular, and kinematic levels.

Nonetheless, the underlying idea of motor primitives is that

a complex motor behavior can be described as the

composition of simpler building blocks (i.e., the motor

primitives) by using a finite set of parameters. The proposed

movement estimation method follows this principle: Instead

of directly estimating the intended movement kinematics

(the epiphenomenon of the intended movement), we make

use of the a-priori knowledge that the movement is periodic

to derive a non-linear dynamical system able to represent the

movement in a finite set of simple features. Specifically, we

make use of adaptive oscillators [4, 29], a mathematical tool

capable of synchronizing to a periodic signal and extracting

its relevant features (like its frequency and envelope)

through dynamical equations.

In this article, we present the results of two recent

experiments. Experiment 1 was conceived as a proof-of-

concept of the whole approach. For that reason, we

designed this experiment to be as simple as possible: we

focused on sinusoidal movements about the elbow joint. As

such, we avoided the intrinsic complexities related to the

lower-limb, like complex periodic joint profiles, multi-

joints coordination, and contacts with the ground. None-

theless, we asked the participants to perform the movement

around the vertical position, mimicking the inverted pen-

dulum configuration of the leg during the stance phase of

walking [15]. This experiment was already published in

[31, 33, 34] and is only surveyed here. Experiment 2

extends the approach to walking assistance, and therefore

specifically addresses the related challenges. Preliminary

results were recently published in [35]. Both experiments

deal with movement assistance of healthy participants.

Therefore, we recorded biological signals—namely EMGs

and oxygen consumption—illustrating that less effort (or

energy) was required from the participants to perform the

same movement, in steady-state regime. We further paid

particular attention to design conditions illustrating the

adaptive features of our controller, i.e., requiring the par-

ticipants to modulate their limb trajectory. This last point is

explored in conditions involving transient behavior, i.e.,

changes in the movement pattern. Extension of our

approach to rehabilitation protocols involving patients will

be an intensive field for future research.

2 Methods

2.1 Feature extraction of a sinusoidal input using

an adaptive oscillator

The central element of the movement assistance approa-

ches presented in this paper is an adaptive oscillator, a tool

developed by Righetti et al. [4, 29] and used in many

applications [30, 34]. Here, we introduce the simplest

adaptive oscillator, which can be regarded as an augmented

phase oscillator:
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_/ðtÞ ¼ xðtÞ þ mFðtÞ cos /ðtÞ; ð1Þ

where, /ðtÞ is the oscillator phase, x(t) its intrinsic

frequency, and m the learning parameter determining the

speed of phase synchronization to the periodic teaching

signal F(t). In order to learn the frequency of the teaching

signal F(t), instead of doing mere synchronization only, the

oscillator frequency is turned into a new state variable,

integrating the phase update:

_xðtÞ ¼ mFðtÞ cos /ðtÞ: ð2Þ

As such, Righetti et al. developed an adaptive oscillator,

having the capacity to constantly adapt its intrinsic fre-

quency to the teaching signal frequency, and to keep this

input frequency in memory, i.e., in the state variable x(t).

Let us now assume (i) that the input signal follows a

sinusoidal pattern, i.e., hðtÞ ¼ a1;in sin ðxintÞ þ a0;in; where

a1;in;xin; and a0;in are the amplitude, frequency, and offset

of this input, respectively; and (ii) that the adaptive oscil-

lator (1), (2) is synchronized with this input. As a conse-

quence, an observer of h(t) can be obtained by:

ĥðtÞ ¼ a1ðtÞ sin /ðtÞ þ a0ðtÞ; ð3Þ

where a1ðtÞ;/ðtÞ; and a0ðtÞ are supposed to converge to the

corresponding input variables. Righetti et al. [29] showed

that this convergence is guaranteed by using the difference

between the input hðtÞ and the filtered (or estimated) input

ĥðtÞ as teaching signal: FðtÞ ¼ hðtÞ � ĥðtÞ; and by

implementing the following integrators for learning the

amplitude and offset:

_a0ðtÞ ¼ gFðtÞ; _a1ðtÞ ¼ gFðtÞ sin /ðtÞ; ð4Þ

where g is the integrator gain. Again, (2) and (4) reach

steady-state when F(t) = 0, i.e., when ĥðtÞ ¼ hðtÞ: If hðtÞ is

only quasi-sinusoidal—i.e., if a1;in;xin; and a0;in slowly

vary in time—ĥðtÞ will be a low-pass filtered version of

hðtÞ; but importantly, both will still be phase-synchronized

on average [6]. This is a critical difference between this

approach and classical low-pass filtering, which unavoid-

ably introduces delay.

In sum, the adaptive oscillator presented above provides

a continuous estimate of the input signal features: fre-

quency (2), amplitude, and offset (4). It further provides a

filtered version of the input (3) which has, on average, the

same phase as the input (see the example in Fig. 1).

2.2 Survey of experiment 1: assistance of a simple

elbow cyclical movement

In [34], we used the adaptive oscillator presented above to

assist a simple cyclical movement of the elbow around the

vertical (upright) position. This was a model-based

approach, in the sense that an inverse dynamic model of the

assisted joint was used to retrieve and amplify the torque

provided by the participant. For all details about this

experiment, the reader is referred to [33, 34].

2.2.1 Movement assistance

We use the elbow position as input hðtÞ of the adaptive

oscillator, and assume it to be (quasi-)sinusoidal. As such,

Eqs. 2 and 4 provide not only a zero-delay smooth estimate

of the input signal (3), but also of its velocity and

acceleration:

_̂hðtÞ ¼ a1ðtÞxðtÞ cos /ðtÞ;
€̂hðtÞ ¼ �a1ðtÞxðtÞ2 sin /ðtÞ:

ð5Þ

Let’s now assume that the elbow dynamics can be

captured with a simple dynamical model R:

€hðtÞ ¼ R hðtÞ; _hðtÞ; uðtÞ;P
� �

;

where P represents the forearm parameters. An estimate of

the total torque ûðtÞ applied to the elbow joint can be

retrieved based on an inverse dynamic model Rinv; i.e.:

ûðtÞ ¼ Rinv ĥðtÞ; _̂hðtÞ; €̂hðtÞ;P
� �

: ð6Þ

Finally, ûðtÞ is the estimate of the input torque u(t) that is

applied at the elbow joint, both by the user uhðtÞ and by the

assistance device ueðtÞ; i.e., uðtÞ ¼ uhðtÞ þ ueðtÞ:
Assistance is provided by feeding back a fraction of this

estimated torque to the user, i.e.:

ueðtÞ ¼ jûðtÞ; ð7Þ

with the level of assistance 0� j\1: Assuming a sta-

tionary sinusoidal movement and a perfect inverse

dynamical model (6), such that ûðtÞ ¼ uðtÞ; the total torque

Fig. 1 Example of the oscillator’s adaptation dynamics. Top The

oscillator’s output ĥðtÞ (solid black line) filters out the sudden change

in the input hðtÞ (dotted gray line), i.e., a frequency step at t = 0.

Bottom Corresponding evolution of the learned frequency xðtÞ:
Adapted with permission from Ronsse et al. 34 (� 2011 IEEE)

Med Biol Eng Comput (2011) 49:1173–1185 1175

123



should emerge from a collaboration between the user

(performing 100ð1� jÞ% of the effort) and the assistance

device (performing 100j% of the effort).

Parameters used in Experiment 1 were equal to m ¼ 20

(1), (2), and g ¼ 5 (4).

2.2.2 Experimental protocol

The assistance device we used in this experiment was the

NEUROExos, an active elbow orthosis conceived for

neurorehabilitation and assistance purposes [23]. Partici-

pants were asked to put their forearm in the upright vertical

position, and to make a cyclical flexion/extension move-

ment around this position. Movement pace was driven by a

metronome (one full flexion-extension cycle between two

consecutive beeps).

Each participant underwent three types of condition, in

the following order:

1. ‘‘no-exo’’: the NEUROExos was actually replaced by a

simple 1-dof goniometer. This was a control condition.

2. ‘‘constant frequency’’: in this condition, the target

movement pace was constant and equal to 1Hz.

Participants performed consecutive trials having a

different level of assistance (j in (7)): j ¼ 0; j ¼
0:33; j ¼ 0 (wash-out), j ¼ 0:5; and j ¼ 0 (wash-out)

(see Fig. 5a for the succession of trials).

3. ‘‘variable frequency’’: to illustrate that participants had

the possibility to modulate the movement features, we

introduced a condition where the target movement

pace varied across the trials (see [34] for details).

Participants again performed consecutive trials with

the same succession of assistance levels as in the

‘‘constant frequency’’ condition.

In order to monitor the participant’s effort, associated

with movement performance during all conditions, we

recorded the surface EMG activity from the biceps brachii

and triceps brachii muscle.

2.3 Experiment 2: walking assistance

In the second experiment, we extended the approach

described above to walking assistance. However, two

important new challenges appeared in this transfer: (i) the

joint trajectory can no longer be considered as being

sinusoidal, such that (3) would not provide reliable esti-

mate of the trajectory; (ii) the inverse model of the legs

during walking would be much more complicated to derive

as it was for the elbow, for instance due to the intermittent

interactions with the ground. Therefore, in contrast to

Experiment 1, we propose here a model-free approach for

walking assistance.

2.3.1 Real-time filtering of non-sinusoidal but periodic

signals

If the input signal is periodic but non-sinusoidal, Righetti

et al. [28] proposed to extend the method explained in

Sect. 2.1 by putting several oscillators in parallel (see the

upper part of Fig. 2). As such, each of these oscillators

should learn one frequency component of the input signal,

providing therefore a kind of real-time Fourier decompo-

sition. We slightly adapted the equations of [28] by

assuming that the input signal was periodic. Therefore,

only the fundamental frequency had to be learned, the

others being multiples of it. Concretely, (1), (2), and (4)

were changed to:

_/iðtÞ ¼ ixðtÞ þ mFðtÞ cos /iðtÞ;
_xðtÞ ¼ mFðtÞ cos /1ðtÞ;
_aiðtÞ ¼ gFðtÞ sin /iðtÞ;

ð8Þ

with FðtÞ ¼ hðtÞ � ĥðtÞ; ĥðtÞ ¼
PK

i¼0 aiðtÞ sin /iðtÞ; and i 2
½0;K� are the K ? 1 parallel oscillators. Note that, in (8),

the 0th oscillator is still a simple integrator, learning the

input offset, with /0ðtÞ ¼ /0ð0Þ ¼ p=2:

However, with the decomposition presented above, a

large number of oscillators was still required to properly

learn dwell intervals within the joint signals, like, e.g., the

plateau in the knee profile during the stance phase of

walking. To improve the quality of the signal estimate, we

coupled the pool of adaptive oscillators to a kernel-based

non-linear filter, similarly to [14] (Fig. 2). Note however

Fig. 2 Online learning of a periodic but non-sinusoidal input signal

h(t). The upper block is a pool of adaptive oscillators (1), (4),

decomposing the input into a real-time Fourier series. The lower
block is a kernel-based non-linear filter, mapping the phase of the

main harmonic /1(t) to the input envelope. Adapted from [14]
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that we simplified the derivations made in [14] since our

application did not target imitation learning, but only

filtering.

This approach can be formulated as a supervised

learning problem:

ĥHðtÞ ¼
P

Wið/1ðtÞÞwiP
Wið/1ðtÞÞ

; ð9Þ

where Wið/ðtÞÞ ¼ exp hðcos ð/ðtÞ � ciÞ � 1Þð Þ is a set of N

Gaussian-like kernel functions. The parameter h deter-

mines their width, and ci their center (equally spaced

between 0 and 2p in N steps). This algorithm then con-

structs a series of local mappings of the input hðtÞ as a

function of the phase /1ðtÞ; and an estimate of the input

ĥHðtÞ from a weighted sum of these mappings.

Following [14, 40], an online version of this learning

process can be implemented using incremental regression,

which is done with the use of recursive least squares with a

forgetting factor of k; to determine the weights wi. Given

the target data hðtÞ;wi is updated by:

wiðk þ 1Þ ¼wiðkÞ þWiðkÞPiðk þ 1Þ hðkÞ � wiðkÞð Þ;

Piðk þ 1Þ ¼ 1

k
PiðkÞ �

PiðkÞ2
k

WiðkÞ þ PiðkÞ

 !
;

ð10Þ

where P is the inverse covariance matrix [24]. If k\1; the

regression gives more weight to recent data. Figure 3

shows the performance of this filter during a representative

cycle in steady-state regime. In sum, three parameters

determine the speed of convergence of the algorithm: m and

g are related to the adaptive oscillator and therefore

establish the convergence rate to frequency changes, and k
tunes the time constant for modulations in the pattern

envelope.

2.3.2 Model-free assistance

In order to provide assistance without relying on an inverse

dynamical model of the body, we adopted the following

approach. First, the system presented in Sect. 2.3.1 was

used to provide an estimate of the joint(s) position in the

future. Indeed, using (9) by replacing / (t) by /ðtÞ þ D/;

an estimate of what the joint position should be at a time

corresponding to a D/ phase lead in the future can be

derived:

ĥH;DðtÞ ¼
P

Wi;Dð/1ðtÞÞwiP
Wi;Dð/1ðtÞÞ

;

Wi;Dð/ðtÞÞ ¼ exp hðcos ð/ðtÞ þ D/ � ciÞ � 1Þ
� �

:

ð11Þ

Again, Fig. 3 shows an example, where ĥH;D is a good

prediction of the future joint trajectory. Second, this

estimated future position ĥH;DðtÞ can be used to attract

the user’s joint in a force field:

ueðtÞ ¼ kf ĥH;DðtÞ � hðtÞ
� �

; ð12Þ

where kf is the field stiffness and ue(t) the desired torque to

be applied by the assistive device.

In sum, the method of assistance we implemented here

is aiming at continuously attracting the user’s joints to their

own future (using the force field (11), (12)), but leaving the

opportunity to the user to constantly adapt the frequency

(through the adaptive oscillator (8)) and shape (through the

filter (10)) of this attractive pattern. For simplicity, we used

a constant stiffness kf and no damping in the force field

(12), and we assisted only the two hips using two separate

force fields. Both sides were coupled together by forcing

the oscillators amplitudes and frequency (8) to reach a

consensus (averaging).

Parameters used in Experiment 2 were equal to: m ¼
6; g ¼ 0:25;K ¼ 6; k ¼ 0:9999;N ¼ 90; h ¼ 144; and

D/ ¼ 36
�

(10% of the cycle).

2.3.3 Participants and experimental setup

Nine healthy participants took part in Experiment 2 (aged

24–28, weight 58–86, four females, five males). The

experiments were conducted in agreement with the local

institution’s ethics regulations, and participants signed a

written consent form.

For testing our approach, we used the LOPES (see

Fig. 4a), a treadmill-based lower-limb exoskeleton devel-

oped at the University of Twente [44, 45, 47, 48], and

capable of assisting 8 DOFs of the lower-limbs (right and

left hip abduction/adduction, hip flexion/extension, and

knee flexion/extension, forward/backward and sideways

movements of the pelvis) by providing torques through the

Fig. 3 Right hip trajectory during a representative cycle of the ‘‘high

assistance’’ condition. The figure shows the actual joint trajectory h

(solid), the filtered trajectory ĥH from the kernel filter (9) (dotted), and

the trajectory ĥH;D predicted by the kernel filter (11) (dashed)
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principle of series elastic actuation [26, 44]. The LOPES is

lightweight and actuation is produced remotely by means

of Bowden cables. Therefore, it is considered as a close-to-

transparent device, inducing only small changes in the

kinematic and EMG patterns with respect to normal

walking [48].

The joint kinematics were recorded using the LOPES

sensors, both to feed the adaptive oscillators, and to pro-

ceed with post-hoc analyses. The LOPES was controlled

using Matlab (the Mathworks, Natick, MA), with a sam-

pling time of 1 ms.

The energy expended by the participants in the various

conditions was measured by the Oxycon Pro system (Jae-

ger, Hoechberg, Germany). Participants were connected to

the Oxycon with a flexible tube making an airtight seal to a

facemask, measuring oxygen consumption (VO2
) and the

volume expiration (VE). Every five seconds (0.2 Hz) these

parameters were measured and stored on the personal

computer connected to the Oxycon. Thereafter, the

normalized rate of expended energy was inferred from the

formula used in [3]:

�E½W=kg� ¼ 16:58 _VO2
þ 4:51 _VCO2

W
; ð13Þ

where _VO2
and _VCO2

are the rates of O2 and CO2 volume

involved in respiratory exchange, and W is the participant

body weight.

2.3.4 Experimental protocol

The participant walked comfortably on the treadmill,

wearing the LOPES on both legs, except during the ‘‘free

walking’’ condition, detailed later. The LOPES was fas-

tened via attachment cuffs to the middle of the thighs, and

the top and bottom of the calves (see Fig. 4a). The LOPES

pelvis module was further attached to the participant waist

with a belt.

This study focused on assistance in the sagittal plane,

and we decided to assist only the hips during walking. To

improve the LOPES transparency, a force proportional

to the joints’ speed was applied to the hips and knees to

compensate for the friction induced by the exoskeleton’s

joints.

Each participant underwent four types of condition, in a

randomized order:

1. ‘‘free walking’’: participants walked on the treadmill

without wearing the LOPES. This condition lasted a

single trial of about 6 min, and was used to evaluate

the rate of expended energy during normal walking.

2. ‘‘transparent’’: the LOPES was controlled to be as

transparent as possible, i.e., by setting kf = 0 in (12),

for both hips. This condition lasted a single trial of

about 6 min, and was used to evaluate the actual level

of transparency of the LOPES on gait cadence and

energy consumption.

3. ‘‘low assistance’’: participants received an assistance

of kf = 0.0142W Nm/deg at the hips, where W is the

participant’s total body weight. This condition con-

sisted of two trials: the first one lasted about 6 min at a

constant treadmill speed (3.6 km/h), and the second

one lasted about 12 min with treadmill speed variations

(see Fig. 4b).

4. ‘‘high assistance’’: participants received an assistance

of kf = 0.0284W Nm/deg at the hips. This condition

also consisted of two trials (constant and variable

treadmill speed) being 6 and 12 min long.

Note that the two levels of assistance were calculated

based on pilot results, to provide, on average, an absolute

assisitive torque corresponding to 50 and 100% of the

average absolute torque produced by the hip during walk-

ing, as reported in [53].

A

B

Fig. 4 a Picture of an healthy subject wearing the LOPES. b Vari-

ations of the treadmill reference speed over a typical trial of ‘‘low

assistance’’ or ‘‘high assistance’’ condition. During the first 6 min, the

reference speed was invariably equal to 3.6 km/h. The last 2 min of

this initial plateau (shaded area) correspond to steady-state behavior

for the analyses. During the last 12 min, the reference speed was made

of 2-min long plateaus at slow (2.7 km/h), normal (3.6 km/h), and fast

(4.5 km/h) speed. Transitions were randomized for each trial
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2.4 Data analysis and statistics

For both experiments, most of the variables analyzed in the

Results section were computed for each movement cycle,

delimited by movement reversals in Experiment 1 and left

heel strikes in Experiment 2, using an appropriate separa-

tion algorithm based on kinematics landmarks and force

plate data (for Experiment 2). Statistical significance of the

changes induced by different modes of assistance was

evaluated using n-ways and repeated measures ANOVAs.

For all significant effects, post-hoc tests (Bonferroni

adjustment) were performed. All data processing and sta-

tistics were computed using Matlab, and with a P factor of

0.05.

3 Results

3.1 Steady-state kinematic profiles

This section presents the main variations that were

observed in the kinematic patterns in both experiments,

depending whether assistance was provided or not. It

focuses on steady-state behavior, i.e., the last 20 cycles for

each condition in Experiment 1, and the shaded area of

Fig. 4b in Experiment 2.

In Experiment 1, the kinematic profiles stayed very

similar across the different conditions. For example, the

average duration of movement cycles is shown in Fig. 5a

for the ‘‘no-exo’’ condition and the ‘‘constant frequency’’

condition. The figure reveals a transient effect due to the

adaptation to the assistance torque: the cycle duration

rapidly decreased (corresponding to faster movements) and

reached again the target pace after about 5–10 cycles.

Some transients are also visible at the beginning of the

‘‘wash-out’’ trials (3 and 5), but they disappeared more

rapidly. We performed statistics on the steady-state per-

formance with the condition/level of assistance as the

unique factor, which revealed no variation in the steady-

state cycle duration. Similar results were obtained for the

movement amplitude [36].

Regarding Experiment 2, cycle duration did show a

modulation depending on the level of assistance, even in

steady-state, i.e., at the end of the 6-min long plateaus with

3.6 km/h of treadmill reference speed: the higher the

assistance, the faster the cycles (see Table 1). Repeated

measures ANOVA reached significance, with post-hoc

tests establishing a significant difference between the ‘‘high

assistance’’ condition and the two unassisted conditions.

On top of cycle duration modulations, changes also

appeared in the kinematic profiles, as shown in Fig. 6 for

the right leg (they are very similar, but with a phase-shift of

50%, for the left one). The figure shows that, when

assistance was provided, the movement tended to be more

ample, even for the knee (which was never assisted).

Table 1 gives the movement range values, and repeated

measures ANOVA always reached significance. In sum,

the higher the assistance, the ampler the movements. In

contrast, the joint angles remained more or less invariant at

the time of contact with the ground (i.e., around 50% of the

cycle). This means that, with assistance, the joints clearly

overshot during swing the position to be reached at impact,

creating an unecessary offset in the trajectory (shown for

the hip in Fig. 6).

3.2 Evidences of assistance

This section presents the results establishing that our as-

sistive methods indeed facilitated the movement execution,

again focusing on steady-state behavior.

In Experiment 1, this was done by recording the biceps

and triceps EMG during task execution. Figure 5b shows

the steady-state EMG profiles normalized over the whole

cycle. Two important results are visible on this figure:

(i) wearing the exoskeleton without assistance (difference

between the ‘‘no-exo’’ condition and the ‘‘constant fre-

quency’’ condition with j = 0) induced larger biceps

activity, this being certainly due to the exoskeleton fore-

arm’s mass and inertia, which were not compensated in

that mode and which mainly loaded the joint flexor; and (ii)

providing assistance (both j = 0.33 and j = 0.5) pro-

gressively induced a marked decrease in peak EMG. The

A

B

Fig. 5 Main results from the ‘‘constant frequency’’ condition in

Experiment 1 (adapted with permission from [34], � 2011 IEEE).

a Cycle-by-cycle evolution of the cycle duration. The figure shows

the last 20 cycles of the ‘‘no-exo’’ condition, and the first and last 20

cycles of each trial of the ‘‘constant frequency’’ condition. Shaded
areas represent the between-participants SEM. b Steady-state EMG

profiles (biceps, left; triceps, right), averaged across participants.

These profiles were obtained by resampling the actual trajectories

over 101 equally spaced points for each cycle, then averaging for each

of the 101 points
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highest level of assistance we tested (j = 0.5) corre-

sponded to a decrease of about 26% in the biceps peak

EMG, and 59% in the triceps peak EMG with respect to the

‘‘no-exo’’ condition.

Regarding Experiment 2, evidence that assistance was

provided to the participants will be established in two

steps. First, we measured the average power (i.e.,

torque 9 velocity), normalized by the body weight, trans-

mitted by the LOPES to the participant. While this quantity

obviously oscillated around 0 W/kg in the ‘‘transparent

condition’’, it raised up to higher values in both assisted

conditions (see Table 1). Interestingly, we found a corre-

lation between this amount of power transfer at the hip and

the offset in hip trajectory illustrated in Fig. 6, among the

different participants. Figure 7 shows this relationship

during steady-state performance of the ‘‘high assistance’’

condition, and establishes that those who ‘‘tolerated’’ the

largest offset in their hip trajectory were those who

received the largest amount of power from the device.

Second, the level of assistance was also directly assessed

by computing the metabolic energy consumption, from

(13). Figure 8 shows this result. First, it is visible that the

supposedly transparent exoskeleton actually significantly

loaded the participants, since the rate of expended energy

increased from the ‘‘free walking’’ to the ‘‘transparent’’

condition. Second, the figure establishes the efficiency of

the assistance, since the rate of expended energy decreased

back for the two assisted conditions, to about two thirds of

the difference with the ‘‘free walking’’ condition. Inter-

estingly, by computing the rate of expended energy during

the very last minute of the ‘‘low assistance’’ and ‘‘high

assistance’’ conditions (which always corresponded to a

‘‘normal’’ treadmill reference speed, see Fig. 4b), we

observed a more important decrease, as if the long period

with variable treadmill speed helped the participants to get

more and more familiar with the provided assistance. The

repeated measure ANOVA confirmed the significance of

this modulation (F(5, 35) = 7.5, p = 0.0001).

3.3 Adaptivity

One of the main properties and advantages of the oscilla-

tor-based approach presented in this article is its capacity to

adapt to movement changes induced by the user. Data

validating this capacity to adapt are presented in this sec-

tion. Therefore, this section specifically refers to transitory

phases, i.e., the ‘‘variable frequency’’ condition in Exper-

iment 1 and the last 12 minutes of the ‘‘low assistance’’ and

‘‘high assistance’’ conditions in Experiment 2.

In Experiment 1, adaptivity was explored in a dedicated

condition, namely the ‘‘variable frequency’’ condition,

where the participants were asked to modulate their

movement frequency throughout each trial. Participants

succeeded in achieving this frequency modulation, and the

adaptive oscillator managed to track the constantly

changing input frequency. Interestingly, we found again a

decrease of the biceps and triceps EMG when assistance

was provided, showing a facilitation of the movement even

when the movement pace was not stationary [33, 34].

Owing to the very large time constant of metabolic

adaptation, it was not possible to measure the assistance

efficiency during the variable speed phase of the ‘‘low

assistance’’ and ‘‘high assistance’’ conditions of Experiment

Table 1 Relevant variables during steady-state behavior of Experiment 2. Given values are mean ± SEM

Variable Values Rep. meas. ANOVA

‘‘Free walking’’ ‘‘Transparent’’ ‘‘Low assitance’’ ‘‘High assitance’’

Cycle duration (s) 1.24 ± 0.02 1.24 ± 0.02 1.20 ± 0.01 1.14 ± 0.02 P(3, 24) = 6.77, P = 0.002

Right hip movement range (�) – 38.8 ± 1.3 41.1 ± 1.4 46.7 ± 1.6 F(2, 16) = 21.8, P = 0.0001

Left hip movement range (�) – 40.4 ± 1.4 42.5 ± 1.1 47.5 ± 1.2 F(2, 16) = 19.3, P = 0.0001

Right knee movement range (�) – 52.9 ± 1.6 59.8 ± 1.8 69.3 ± 2.1 F(2, 16) = 142.8, P \ 0.0001

Left knee movement range (�) – 58.8 ± 1.7 65.2 ± 1.2 72.7 ± 1.1 F(2, 16) = 54.7, P \ 0.0001

Norm. transferred power (W/kg) – -0.45 ± 0.02 9.58 ± 0.37 26.38 ± 1.24 F(2, 16) = 194.4, P \ 0.0001

Fig. 6 Angular trajectory of the right hip (top) and knee (bottom)

during the ‘‘transparent’’ condition (blue), the ‘‘low assistance’’

condition (purple), and the ‘‘high assistance’’ condition (orange), in

steady-state, with a walking speed of 3.6 km/h. Labels show the

periods of double support (DS), swing, and single support stance.

Averaged across participants
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2. Therefore, for this experiment, we will rather focus on a

characterization of the time constants of adaptation of the

assistive algorithm. Figure 9 shows the time evolution of

different variables around a representative variation in the

treadmill reference speed (here, from slow to fast speed).

After the transition, the movement pace changed rapidly, and

this change was almost instantaneously detected by the

adaptive oscillator. The error in estimated position (gray area

in Fig. 3) took a bit more time to converge back to the steady-

state value. Thereafter, the power transferred from the device

to the user also converged to steady-state. To quantify

these trends, we fitted exponential curves on these data,

for all participants, all transitions, and both levels of assis-

tance. More precisely, we fitted an equation of the form c1ð1�
e�c=dsÞ þ c0 on the actual and estimated frequencies, and on

the transferred power, and of the form c1ð1� e�c=df Þe�c=ds þ

c0 on the position error, where c corresponds to the cycle

number, with c = 0 at the transition. For the analysis, we kept

the ds’s as the (slowest) time constants of interest. Said dif-

ferently, if the identified time constant was ds, the corre-

sponding variable took ds cycles to reach 67% of its new

steady-state value.

Figure 9e shows these time constants, for the 6 possible

transitions and the ‘‘low assistance’’ and ‘‘high assistance’’

conditions. Obviously, the fastest one corresponded to the

adaptation of the actual movement frequency, and varied

between less than one cycle and around six cycles, depending

on the transition and condition. Note that this time constant

cannot be compared with the time constant of the actual

treadmill speed adaptation, since actual treadmill speed was

not recorded. Very consistently, the estimated frequency

adapted about one cycle later, this delay being solely caused

by the oscillator dynamics (8). The position error adapted

with a slower time constant of about six cycles, corre-

sponding to the adaptation of the kernel filter (10). The

normalized transferred power evolved in parallel since, as

suggested by (12) the transferred torque directly depended

on the estimated position ĥHðtÞ: First, a repeated measures

ANOVA with the variable as single factor confirmed the

causality: dact freq\dest freq\dpos err ’ dpowðFð3; 321Þ ¼
46:6;P\0:0001Þ: Second, looking to each variable inde-

pendently, we designed Two-way repeated measures

ANOVAs (6 transitions 9 2 conditions) to sort out these

dependences:

The time constant of adaptation of the actual movement

frequencies depended on the transition type (F(5, 40) =

3, P = 0.02), on the condition (F(1, 40) = 23.8, P =

0.001), and on their interaction (F(5, 40) = 3.2, P = 0.02).

The time constant of adaptation of the estimated

movement frequencies depended also on the transition type

(F(5, 40) = 2.6, P = 0.04), and on the condition

(F(1, 40) = 18.8, P = 0.003), but not on their interaction

(P [ 0.2).

The time constant of adaptation of the position error

depended also on the type of transition (F(5, 10) =

2.5, P = 0.05), and on the condition (F(1, 40) = 6.5, P =

0.03), but not on their interaction (p [ 0.5).

The time constant of adaptation of the transferred power

depended only on the transition type (F(5, 40) = 9.9,

P \ 0.0001), but neither on the condition, nor on their

interaction (both P’s [ 0.3).

Figure 9e shows that, in general, all time constants were

smaller (i.e., faster adaptation) in transitions from a faster

to a slower treadmill speed. Moreover, adaptation of the

movement frequency tended to go faster for the ‘‘low

assistance’’ than for the ‘‘high assistance’’ condition.

In sum, this analysis shows a causality in the adaptation

of our assistive algorithm: the estimated frequency adapted

Fig. 7 Correlation between the amount of trajectory offset and the

average power transfered from the device to the participant, for the

right hip, and in steady-state during the ‘‘high assistance’’ condition.

Each point represents an individual participant, and the solid line
represents the correlation slope. Correlation coefficient: r = 0.77

(p \ 0.015)

Fig. 8 Normalized rate of expended energy by the participants

during the different conditions, in steady-state. The gray bars
represent the data recorded at the very end (i.e., during the last

minute) of the ‘‘low assistance’’ and ‘‘high assistance’’ conditions.

Error bars represent the between-participants SEM. Stars show the

pairwise comparisons reaching significance (post-hoc)
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rapidly after the actual change in movement pace, and the

kernel adaptation followed later, corresponding to a new

steady-state in the transferred power. All time constants

were below ten cycles—i.e., about 12 s—an encouraging

result to envision real-life scenarios.

4 Discussion

This article presented two experiments that we recently

conducted to validate a new approach to assisting cyclical

movements using adaptive oscillators. We described three

main results: (i) some subtle changes in the movement

pattern due to the assistance, (ii) evidence that the assis-

tance indeed reduced the muscular activity or the metabolic

cost during the task execution, and (iii) the adaptive fea-

tures of our mechanism.

The main characteristic of our approach is its capacity to

achieve a robust synchronization between the user and the

assistive robot. Synchronization is an ubiquitous phenom-

enon in biology [42] and, during locomotion, is observed at

the level of spinal central pattern generators to guarantee

the pattern coordination [18]. Here, we proposed to

implement the synchronization mechanisms by means of

adaptive oscillators [4, 29, 30] such that, on top of input-

output synchronization, the movement features (amplitude,

frequency, etc.) are stored in dedicated state variables. This

turned out to be very helpful to derive both model-based

and -free algorithms. In Experiment 1, we developed a

model-based strategy based on a real-time estimate of the

trajectory profile (including first and second order deriva-

tives), and in Experiment 2, we used the estimated state

variables to make a prediction about the future joints

position, in a model-free version.

Kinematic analysis focused on potential changes in the

movement pattern, depending on whether assistance was

provided or not. In Experiment 1, only minor changes were

found in steady-state behavior. This is logical, since the

movement pace was driven by a metronome, and the pattern

was quite stereotyped. In Experiment 2, more interesting

changes were observed. First, we observed an increase of the

overall task tempo (cycle frequency) when assistance was

provided. Consequently, the stride length decreased, to

maintain a constant forward speed (imposed by the tread-

mill). The type and level of assistance that the participants

received were driven by dynamical systems and conse-

quently, the perceived leg impedance can likely be altered by

the assistance. For example, in the framework of Experiment

1, it is easy to show that an ‘‘ideal’’ controller should decrease

the perceived mass, inertia, and friction coefficient of the

assisted limb by a factor j. This is more difficult to quantify

for Experiment 2, due to the absence of a dynamical model,

but similar effects should be in place. Therefore, the reso-

nance frequency of the coupled (leg and actuated robot)

system could also vary with the level of assistance, and the

participant could intend to change the gait cadence to match

with the changing resonance frequency [50, 52]. As docu-

mented in the literature (e.g., [53]), the pattern shape slightly

changes with the cadence, a phenomenon that we observed

here as well.

The main variation in the gait pattern was the appear-

ance of an offset in the hip trajectory before heel strike.

Said differently, during the swing phase, the whole leg

moved ‘‘too much’’ forward, requiring a small backward

movement before heel strike. Interestingly, the participants

who made the largest offsets were also those who received

the largest amount of power (normalized to their body

weight) from the device. This offset could thus be viewed

as an adaptation of the walking gait to maximize the

received assistance.

A

B

C

D

E

Fig. 9 For a representative participant and transition, the figure

shows the time evolution of different variables around a variation in

the treadmill reference speed (a), b actual movement frequency

(inverse of the cycle duration, gray) and movement frequency

estimated by (8) (black); c absolute error in estimated position, i.e.,

khðtÞ � ĥHðtÞk; where ĥHðtÞ is given by (9) (gray area in Fig. 3); and

d normalized power transferred from the device to the user. c and

d are averaged over each cycle. e Slowest time constant of the return

to steady-state of the actual and estimated movement frequency, the

position error, and the transferred power. Values are given for the

right hip (when applicable), the six possible transitions, and the ‘‘low

assistance’’ and ‘‘high assistance’’ conditions. Error bars represent

the between-participants SEM

1182 Med Biol Eng Comput (2011) 49:1173–1185

123



Both in Experiments 1 and 2, we paid attention to collect

data to validate that our approach indeed facilitated the

movement execution, by lowering the human effort asso-

ciated to it. These data corresponded to biometric variables

(EMGs in Experiment 1, and oxygen consumption in

Experiment 2), and were thus completely decoupled from

the robot controllers. The corresponding analyses tended to

validate our assumption, although, in Experiment 2, we

only managed to reach a level slightly above the one during

free walking. As such, the benefit of our assistance was

completely washed out by the burden of wearing the

device. These results are however encouraging, and they

have to be balanced with the literature illustrating the

challenge related to reduce the metabolic cost of free

walking with an assistive device [9, 37, 38, 51]. Possible

directions to improve this result would require to (i) make

the LOPES more transparent [25, 46], (ii) increase the level

of assistance, (iii) give longer familiarization trials to the

users (Fig. 8 already suggests a further improvement at the

very end of the trial), and (iv) develop a more sensible

assistance scheme. Regarding this last point, it is worth

noting that the force field implemented in Experiment 2

(12) basically provided a torque which is proportional to

the joint velocity (since ĥH;DðtÞ � hðtÞ approximates the

curve tangent, and is then close to its first derivative). As a

consequence, the provided power (torque 9 angular

velocity) can only be positive (proportional to the squared

velocity). This is maybe appropriate for the hip (which

mostly delivers positive power during walking), but clearly

not for the knee [43, 53]. This could explain why pilot

experiments showed that this type of assistance was not

appropriate for the knee, suggesting us to only assist the

hips in Experiment 2.

Finally, some results were also collected to illustrate the

capacity of our controllers to adapt to changes in the

steady-state movement pattern. These changes can be

caused either by external factors (a change in the level of

assistance—Experiment 1—or in the treadmill speed—

Experiment 2), or internal factors (a voluntary modulation

of the movement frequency—Experiment 1). In both

experiments, we showed that the intrinsic adaptation time

constant of the behavior was always smaller than ten

cycles, and was actually equal to the time constant of the

oscillator itself. As demonstrated in the ‘‘variable fre-

quency’’ condition of Experiment 1, this permitted smooth

adaptation to changes in movement frequency, as long as

the rate of change stayed below the intrinsic time constant

of the adaptive oscillator. Future investigations will be

conducted to establish whether these time constants are

compatible with real-life scenarios and, if necessary, how

the oscillator’s time constants should be tuned to deal with

real-life requirements. Note that additional security

mechanisms could be implemented to decrease the level of

assistance during the non-stationary phase, for instance

when the state variables first derivatives (8) are above a

certain threshold.

This requirement to adapt the provided assistance

depending on the user behavior is of prime interest in the

framework of assist-as-needed rehabilitation robotics. We

believe that the oscillator-based framework presented in

this article nicely complements other approaches based on

compliance [10, 27, 45, 47], adaptation [1, 19, 27] or

adaptive learning of a dynamical model for the task at hand

[54]. In particular, our approach relies on the concept of

motor primitives, which first emerged in biology [2, 16]

and is now extensively used in robotics [8, 17]. Assistance

and rehabilitation robotics lie at the intersection of both

fields, and should therefore be an ideal testbed for the

concept. In particular, the concept of motor primitives

postulates that some ‘‘knowledge’’ about the movement is

hard-coded within the bottom layer of the controller, in

order to decrease the bandwidth requirement between the

‘‘brain’’ and this bottom layer [18]. This is exactly what we

did here, by pre-coding the fact that the task is cyclical (in

both experiments) and sinusoidal (only in Experiment 1)

into the controller. As such, no adaptation of the controller

(i.e., no information transfer) was required during steady-

state cyclical behavior.

The biggest challenge for us in the coming years will be to

transfer these concepts to actual rehabilitation, i.e., to studies

with patients. We believe that our approach opens up

promising avenues, since (i) it provides assistance which is

intuitive for the user (again, our naive healthy participants

adapted as fast as the oscillator itself), (ii) it requires no

sensor placement (only the robot joints position has to be

sensed), (iii) it provides trajectory-free assistance, and (iv) it

opens perspective to derive assist-as-needed protocols, for

example by modulating the assistance gain as a function of

the gait phase. Moreover, our framework could be easily

adapted to different scenarios, or different patient needs, due

to the intrinsic flexibility of dynamical systems.

In conclusion, this article presented a new method to

provide movement assistance during rhythmic movements.

Summarizing the results from [33, 34], the first experiment

was a proof-of-concept, which was further extended to a

walking task (Experiment 2). The main result we obtained

is that our method indeed assisted the user during the

movement execution, without preventing him/her to keep

the full control on the movement features. Importantly, this

was achieved using simple and cheap sensors, i.e., only the

device encoders.
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