Skip to main content
Log in

Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Direct infusion by means of needles is one of the widely used methods for the delivery of nanoparticles in tumors for hyperthermia cancer treatments. During an infusion process, infusion-induced deformation can substantially affect the dispersion of the nanoparticles injected in a biological tissue. In this study, a poroelastic model is developed to investigate fluid transport and flow-induced tissue deformation in a tumor during an infusion process. A surface tracking technique is employed to predict the shape of nanofluid spreading after injection. The model is then used to simulate the formation of backflow and the change of tissue porosity due to the deformation. Specifically, we quantify the influence of the backflow on the spreading shape of the nanofluid and its dependence on injection parameters such as infusion rates, needle diameters, and tumor elastic properties. It is found that backflow is an important factor causing an irregular distribution of the nanofluid injected in a tumor. A higher infusion rate, larger needle diameter, and lower elastic modulus yield a longer backflow length and cause a more irregular spreading shape of the nanofluid. The infusion-induced tissue deformation also leads to a pore swelling and an increase of the porosity in the vicinity of the needle tip and the needle outer surface. It is anticipated that the increased pore size may facilitate the particle penetration in a tumor. To achieve a controlled heat generation, the injection parameters should be selected judiciously with the consideration of tumor sizes, tumor properties, and thresholds at which tumors break under the infusion pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30(12):2302–2318

    Article  PubMed  CAS  Google Scholar 

  2. Attaluri A, Ma R, Zhu L (2011) Using microCT imaging technique to quantify heat generation distribution induced by magnetic nanoparticles for cancer treatments. J Heat Transf 133(1):011003–011005

    Article  Google Scholar 

  3. Basser PJ (1992) Interstitial pressure, volume, and flow during infusion into brain tissue. Microvasc Res 44:143–165

    Article  PubMed  CAS  Google Scholar 

  4. Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86:165–172

    Article  PubMed  Google Scholar 

  5. Chen XM, Sarntinoranont M (2007) Biphasic finite element model of solute transport for direct infusion into nervous tissue. Annu Biomed Eng 35(12):2145–2158

    Article  Google Scholar 

  6. Chen ZJ, Broaddus WC, Viswanathan RR, Raghavan R, Gillies GT (2002) Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans Biomed Eng 49(2):85–96

    Article  PubMed  Google Scholar 

  7. Choi APC, Zheng YP (2005) Estimation of Young’s modulus and Poisson’s ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect. Med Biol Eng Comput 43(2):258–264

    Article  PubMed  CAS  Google Scholar 

  8. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135

    Article  PubMed  CAS  Google Scholar 

  9. Gu WY, Hao H, Huang CY, Cheung HS (2003) New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech 36(4):593–598

    Article  PubMed  CAS  Google Scholar 

  10. Hergt R, Hiergeist R, Zeisberger M, Glockl G, Weitschies W, Ramirez LP, Hilger I, Kaiser WA (2004) Enhancement of AC-losses of magnetic nanoparticles for heating applications. J Magn Magn Mater 280:358–368

    Article  CAS  Google Scholar 

  11. Hilger I, Andra W, Hergt R, Hiergeist R, Schubert H, Kaiser WA (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218(2):570–575

    PubMed  CAS  Google Scholar 

  12. Hilger I, Hergt R, Kaiser WA (2005) Towards breast cancer treatment by magnetic heating. J Magn Magn Mater 293(1):314–319

    Article  CAS  Google Scholar 

  13. Holmes MH, Mow VC (1990) The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech 23(11):1145–1156

    Article  PubMed  CAS  Google Scholar 

  14. Ivanchenko O, Sindhwani N, Linninger A (2010) Experimental techniques for studying poroelasticity in brain phantom gels under high flow microinfusion. J Biomech Eng 132(5):051008

    Article  PubMed  CAS  Google Scholar 

  15. Jain RK (1997) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 26(2–3):71–90

    Article  PubMed  CAS  Google Scholar 

  16. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth 21:637–647

    Article  CAS  Google Scholar 

  17. Jordan A, Scholz R, Maier-Hauff K, Van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, Von Deimling A, Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol 78:7–14

    Article  CAS  Google Scholar 

  18. Khaled A-RA, Vafai K (2003) The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46(26):4989–5003

    Article  Google Scholar 

  19. Lai WM, Mow VC (1980) Drug-induced compression of articular cartilage during a permeation experiment. Biorheology 17:111–123

    PubMed  CAS  Google Scholar 

  20. Lim CT, Han J, Guck J, Espinosa H (2010) Micro and nanotechnology for biological and biomedical applications. Med Biol Eng Comput 48(10):941–943

    Article  PubMed  Google Scholar 

  21. Matsuki H, Yanada T, Sato T, Murakami K, Minakawa S (1994) Temperature-sensitive amorphous magnetic flakes for intratissue hyperthermia. Mater Sci Eng A181(182):1366–1368

    Google Scholar 

  22. McGuire S, Zaharoff D, Yuan F (2006) Nonlinear dependence of hydraulic conductivity on tissue deformation during intratumoral infusion. Annu Biomed Eng 34(7):1173–1181

    Article  Google Scholar 

  23. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth 18(4):267–284

    Article  CAS  Google Scholar 

  24. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33:333–353

    Article  Google Scholar 

  25. Morrison PF, Chen MY, Chadwick RS, Lonser RR, Oldfield EH (1999) Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol 277(4):R1218–R1229

    PubMed  CAS  Google Scholar 

  26. Neeves KB, Sawyer AJ, Foley CP, Saltzman WM, Olbricht WL (2007) Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Brain Res 1180:121–132

    Article  PubMed  CAS  Google Scholar 

  27. Netti PA, Baxter LT, Boucher Y (1997) Macro- and microscopic fluid transport in living tissues: application to solid tumors. AIChE J 43(3):818–834

    Article  CAS  Google Scholar 

  28. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  PubMed  Google Scholar 

  29. Raghavan R, Mikaelian S, Brady M, Chen ZJ (2010) Fluid infusions from catheters into elastic tissue: Ι. Azimuthally symmetric backflow in homogeneous media. Phys Med Biol 55:281–304

    Article  PubMed  Google Scholar 

  30. Salloum M, Ma R, Weeks D, Zhu L (2008) Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hyperth 24(4):337–345

    Article  CAS  Google Scholar 

  31. Salloum M, Ma R, Zhu L (2008) An in vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int J Hyperth 24(7):589–601

    Article  CAS  Google Scholar 

  32. Sobey I, Wirth B (2006) Effect of non-linear permeability in a spherically symmetric model of hydrocephalus. Math Med Biol 23(4):339–361

    Article  PubMed  Google Scholar 

  33. Su D, Ma R, Salloum M, Zhu L (2010) Multi-scale study of nanoparticle transport and deposition in tissues during an injection process. Med Biol Eng Comput 48:853–863

    Article  PubMed  Google Scholar 

  34. Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Wang H, Li C-Y, Yuan F (2006) Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery. Mol Cancer Ther 5(2):362–366

    Article  PubMed  CAS  Google Scholar 

  36. Warszynski P (2000) Coupling of hydrodynamic and electric interactions in adsorption of colloidal particles. Adv Colloid Interface Sci 84(1–3):47–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research is supported by NSF research grant CBET-0828728.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghui Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, D., Ma, R. & Zhu, L. Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments. Med Biol Eng Comput 49, 1233–1240 (2011). https://doi.org/10.1007/s11517-011-0819-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0819-y

Keywords

Navigation