Skip to main content

Advertisement

Log in

Sensor-based cell and tissue screening for personalized cancer chemotherapy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Personalized tumor chemotherapy depends on reliable assay methods, either based on molecular “predictive biomarkers” or on a direct, functional ex vivo assessment of cellular chemosensitivity. As a member of the latter category, a novel high-content platform is described monitoring human mamma carcinoma explants in real time and label-free before, during and after an ex vivo modeled chemotherapy. Tissue explants are sliced with a vibratome and laid into the microreaction chambers of a 24-well sensor test plate. Within these ≈23 μl volume chambers, sensors for pH and dissolved oxygen record rates of cellular oxygen uptake and extracellular acidification. Robot-controlled fluid system and incubation are parts of the tissue culture maintenance system while an integrated microscope is used for process surveillance. Sliced surgical explants from breast cancerous tissue generate well-detectable ex vivo metabolic activity. Metabolic rates, in particular oxygen consumption rates have a tendency to decrease over time. Nonetheless, the impact of added drugs (doxorubicin, chloroacetaldehyde) is discriminable. Sensor-based platforms should be evaluated in explorative clinical studies for their suitability to support targeted systemic cancer therapy. Throughput is sufficient for testing various drugs in a range of concentrations while the information content obtained from multiparametric real-time analysis is superior to conventional endpoint assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abel U (1992) Chemotherapy of advanced epithelial cancer: a critical review. Biomed Pharmacother 46:439–452

    Article  PubMed  CAS  Google Scholar 

  2. Brischwein M, Grundl D, Zhang X, Wolf B (2009) Finite-element modelling of microphysiometry on cellular specimen, World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany. In: Dössel O, Schlegel WC (eds) IFMBE proceedings, vol 25/VII, Springer, Heidelberg (ISBN 978-3-642-03472-5, S. 30-33)

  3. Brischwein M, Motrescu ER, Otto AM, Cabala E, Grothe H, Wolf B (2003) Functional cellular assays with multiparametric silicon sensor chips. Lab Chip 3(4):234–240

    Article  PubMed  CAS  Google Scholar 

  4. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416

    PubMed  CAS  Google Scholar 

  5. Demetrick DJ, Douglas J (2003) Targeting cancer treatment: the challenge of anatomical pathology to the analytical chemist. Analyst 128:995–997

    Article  PubMed  CAS  Google Scholar 

  6. Desar IME, van Herpen CML, van Laarhoven HWM, Barentz JO, Oyen WJG, van der Graaf WTA (2009) Beyond recist: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev 35:309–321

    Article  PubMed  CAS  Google Scholar 

  7. Eklund S, Nygren R, Larsson R (1998) Microphysiometry: new technology for evaluation of anticancer drug activity in human tumor cells in vitro. Anti-Cancer Drugs 9:531–538

    Article  Google Scholar 

  8. Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18:330–337

    Article  PubMed  CAS  Google Scholar 

  9. Fang Y, Sullivan R, Graham CH (2007) Confluence-dependent resistance to doxorubicin in human MDA-MB-231 breast carcinoma cells requires hypoxia-inducible factor-1 activity. Exp Cell Res 313:867–877

    Article  PubMed  CAS  Google Scholar 

  10. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366

    Article  PubMed  CAS  Google Scholar 

  11. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects on the anthracycline antibiotics adriamycin and daunomycin. Biochem Pharmacol 57:727–741

    Article  PubMed  CAS  Google Scholar 

  12. Hafner F (2000) Cytosensor microphysiometer: technology and recent applications. Biosens Bioelectron 15:149–158

    Article  PubMed  CAS  Google Scholar 

  13. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463

    Article  PubMed  CAS  Google Scholar 

  14. Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775:163–180

    PubMed  CAS  Google Scholar 

  15. Henning T, Brischwein M, Baumann W, Ehret R, Freund I, Kammerer R, Lehmann M, Schwinde A, Wolf B (2001) Approach to a multiparametric sensor-chip based tumor chemosensitivity assay. Anti-Cancer Drugs 12:21–32

    Article  PubMed  CAS  Google Scholar 

  16. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  PubMed  CAS  Google Scholar 

  17. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s achilles′ heel. Cancer Cell 13:472–482

    Article  PubMed  CAS  Google Scholar 

  18. Mattern J, Volm M (1982) Clinical relevance of predictive tests for cancer chemotherapy. Cancer Treat Rev 9:267–298

    Article  PubMed  CAS  Google Scholar 

  19. McAlphine JN, Eisenkop SM, Spirtos NM (2008) Tumor heterogeneity in ovarian cancer as demonstrated by in vitro chemoresistance assays. Gynecol Oncol 110:360–364

    Article  Google Scholar 

  20. Mestres P, Morguet A (2009) The bionas technology for anticancer drug screening. Expert Opin Drug Discov 4:785–797

    Article  CAS  Google Scholar 

  21. Mestres P, Morguet A, Schmidt W, Kob A, Thedinga E (2006) A new method to assess drug sensitivity on breast tumor acute slices preparation. Ann NY Acad Sci 1091:460–469

    Article  PubMed  CAS  Google Scholar 

  22. Metzger R, Deglmann CJ, Hoerrlein S, Zapf S, Hilfrich J (2001) Towards in vitro prediction of an in vivo cytostatic response of human tumor cells with a fast chemosensitivity assay. Toxicology 166:97–108

    Article  PubMed  CAS  Google Scholar 

  23. Nagourney RA (2006) Ex vivo programmed cell death and the prediction of response to chemotherapy. Curr Treat Options Oncol 7:103–110

    Article  PubMed  Google Scholar 

  24. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    Article  PubMed  CAS  Google Scholar 

  25. Owicki JC, Parce JW (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosens Bioelectron 7:255–272

    Article  PubMed  CAS  Google Scholar 

  26. Petersen L (2003) Wirkspiegel des ifosfamidmetaboliten chloracetaldehyd im verhältnis zu den thiolen cystein, glutathion und mesna im blut und in menschlichen tumorxenograften bei der nacktmaus. Inauguraldissertation, Universität Lübeck

  27. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  PubMed  CAS  Google Scholar 

  28. Rustum YM, Slocum HK (1988) Predictive tests for cancer chemotherapy and the problem of tumor cell heterogeneity. Prog Clin Biol Res 276:119–137

    PubMed  CAS  Google Scholar 

  29. Tomida A, Tsuruo T (1999) Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anti-Cancer Drug Design 14:169–177

    PubMed  CAS  Google Scholar 

  30. Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A, Coggi G, Flavin R, Bosari S, Loda M (2010) Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS 107:8352–8356

    Article  PubMed  CAS  Google Scholar 

  31. van Nijsten NW (2009) Hypothesis: using the warburg effect against cancer by reducing glucose and providing lactate. Med Hypthesis 73:48–51

    Article  CAS  Google Scholar 

  32. Wolf B, Brischwein M, Baumann W, Ehret R, Henning T, Lehmann M, Schwinde A (1998) Microsensor-aided measurements of cellular signalling and metabolism on tumor cells: the cell monitoring system (CMS®). Tumor Biol 19:374–383

    Article  CAS  Google Scholar 

  33. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrwell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Brischwein or Bernhard Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinhans, R., Brischwein, M., Wang, P. et al. Sensor-based cell and tissue screening for personalized cancer chemotherapy. Med Biol Eng Comput 50, 117–126 (2012). https://doi.org/10.1007/s11517-011-0855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0855-7

Keywords

Navigation