Skip to main content
Log in

Influence of the shape of intracellular potentials on the morphology of single-fiber extracellular potentials in human muscle fibers

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Attention of the investigators is usually pointed to the peak-to-peak characteristics of single-fiber action potentials (SFAPs) that are mainly determined by the depolarizing phase of the intracellular action potential (IAP). However, the final portion of the SFAP has often specific shape that has to be related to peculiarities of the repolarization phase of IAP and the duration of its spike. A novel piecewise SFAP model is proposed to achieve greater insight into the nature of declining portion of the negative phase and of the third phase of SFAP. It was found that the SFAP third phase is essentially determined by the specific profile of the transition of the IAP falling phase toward the resting voltage, whereas the SFAP declining negative phase is more dependent upon the width of the corresponding IAP spike. We tentatively suggest that the duration of the spike of human IAPs should be over approximately 0.75 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akaike N (1978) Resting and action potentials in white muscle of potassium deficient rats. Comp Biochem Physiol A Physiol 61:629–633

    Article  Google Scholar 

  2. Albers BA, Put JH, Wallinga W, Wirtz P (1989) Quantitative analysis of single muscle fiber action potentials recorded at known distances. Electroencephalogr Clin Neurophysiol 73(3):245–253

    Article  PubMed  CAS  Google Scholar 

  3. Albuquerque EX, Thesleff S (1968) A comparative study of membrane properties of innervated and chronically denervated fast and slow skeletal muscles of the rat. Acta Physiol Scand 73:471–480

    PubMed  CAS  Google Scholar 

  4. Andreassen S, Rosenfalck A (1981) Relationship of intracellular and extracellular action potentials of skeletal muscle fibers. CRC Crit Rev Bioeng 7:267–306

    Google Scholar 

  5. Arabadzhiev T, Dimitrov GV, Chakarov V, Dimitrov A, Dimitrova NA (2008) Effects of changes in intracellular action potential on potentials recorded by single-fiber, macro, and belly-tendon electrodes. Muscle Nerve 37:700–712

    Article  PubMed  Google Scholar 

  6. Dimitrov GV, Dimitrova NA (1979) Influence of the afterpotentials on the shape and magnitude of the extracellular potentials generated under activation of excitable fibres. Electromyogr Clin Neurophysiol 19:249–267

    PubMed  CAS  Google Scholar 

  7. Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20:374–381

    Article  PubMed  CAS  Google Scholar 

  8. Dimitrova NA (1973) Influence of the length of the depolarized zone on the extracellular potential field of a single unmyelinated nerve fiber. Electromyogr Clin Neurophysiol 13:547–558

    PubMed  CAS  Google Scholar 

  9. Dimitrova NA, Dimitrov GV (2006) Electromyography (EMG) modeling. In: Metin A (ed) Wiley encyclopedia of biomedical engineering. Wiley, Hoboken

    Google Scholar 

  10. Duchene J, Hogrel JH (2000) A model of EMG generation. IEEE Trans Biomed Eng 47:192–201

    Article  PubMed  CAS  Google Scholar 

  11. Dumitru D (1994) The biphasic morphology of voluntary and spontaneous SFAPs. Muscle Nerve 17:1301–1307

    Article  PubMed  CAS  Google Scholar 

  12. Ekstedt J (1964) Human single fibre action potentials. Acta Physiol Scand 61(226):1–96

    Google Scholar 

  13. Farina D, Merletti R (2001) A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Trans Biomed Eng 48(6):637–646

    Article  PubMed  CAS  Google Scholar 

  14. Fleisher SM (1984) Comparative analysis of modelled extracellular potentials. Med Biol Eng Comput 22:440–447

    Article  PubMed  CAS  Google Scholar 

  15. Fortune E, Lowery MM (2011) Simulation of the interaction between muscle fiber conduction velocity and instantaneous firing rate. Ann Biomed Eng 39(1):96–109

    Article  PubMed  Google Scholar 

  16. Griep PAM, Boon KL, Stegeman DF (1978) A study of the motor unit action potential by means of computer simulation. Biol Cybern 30:221–230

    Article  PubMed  CAS  Google Scholar 

  17. Gootzen TH, Stegeman DF, Van Oosterom A (1991) Finite limb dimensions and finite muscle length in a model for the generation of electromyographic signals. Electroencephalogr Clin Neurophysiol 81(2):152–162

    Article  PubMed  CAS  Google Scholar 

  18. Gydikov A (1991) Biophysics of the skeletal muscle extracellular potentials. Bulg Acad Sci 132:60–100

    Google Scholar 

  19. Hanson J (1974) Effects of repetitive stimulation on membrane potentials and twitch in human and rat intercostal muscle fibers. Acta Physiol Scand 92:238–248

    Article  PubMed  CAS  Google Scholar 

  20. Henriquez CS, Plonsey R (1988) The effect of the extracellular potential on propagation in excitable tissue. Comments Theor Biol 1:47–64

    Google Scholar 

  21. Ludin HP (1969) Microelectrode study of normal human skeletal muscle. Eur Neurol 2(6):340–347

    Article  PubMed  CAS  Google Scholar 

  22. Ludin HP (1970) Microelectrode study of dystrophic human skeletal muscle. Eur Neurol 3(2):116–121

    Article  PubMed  CAS  Google Scholar 

  23. Ludin HP (1973) Action potentials of normal and dystrophic human muscle fibers. In: Desmedt JE (ed) New development in electromyography and clinical neurophysiology. Karger, Basel, pp 400–406

    Google Scholar 

  24. McGill KC, Lateva ZC (2001) A model of the muscle-fiber intracellular action potential waveform, including the slow repolarization phase. IEEE Trans Biomed Eng 48:1480–1483

    Article  PubMed  CAS  Google Scholar 

  25. Miller-Larson A (1985) An analysis of extracellular single muscle fiber. Biol Cybern 51:271–284

    Article  Google Scholar 

  26. Nandedkar S, Stålberg E (1983) Simulation of single muscle fiber action potentials. Med Biol Eng Comput 21:158–165

    Article  PubMed  CAS  Google Scholar 

  27. Nandedkar S, Sanders DB (1988) Simulation of concentric needle EMG motor unit action potentials. Muscle Nerve 11:151–159

    Article  PubMed  CAS  Google Scholar 

  28. Piotrkiewicz M, Miller-Larsson A (1987) A method of description of single muscle fiber activity. Biol Cybern 56:237–245

    Article  PubMed  CAS  Google Scholar 

  29. Plonsey R (1974) The active fiber in a volume conductor. IEEE Trans Biomed Eng 21:371–381

    Article  PubMed  CAS  Google Scholar 

  30. Radicheva N, Gerilovsky L, Gydikov A (1986) Changes in the muscle fiber extracellular action potentials in long-lasting (fatiguing) activity. Eur J Appl Physiol Occup Physiol 55(5):545–552

    Article  PubMed  CAS  Google Scholar 

  31. Rodriguez-Falces J, Malanda-Trigueros A, Gila-Useros L, Rodriguez -Carreño I, Navallas-Irujo J (2006) Modelling fibrillation potentials—a new analytical description for the muscle intracellular action potential. IEEE Trans Biomed Eng 53:581–592

    Article  PubMed  Google Scholar 

  32. Rodríguez J, Malanda A, Gila L, Rodriguez I, Navallas J (2011) Estimating the duration of intracellular action potentials in muscle fibres from single-fibre extracellular potentials. J Neurosci Meth 197(221):230

    Google Scholar 

  33. Rodriguez J, Malanda A, Gila L, Rodriguez I, Navallas J (2011) The peak-to-peak ratio of single-fibre potentials is little influenced by changes in the electrode positions close to the muscle fibre. J Electromyogr Kinesiol 21:423–432

    Article  PubMed  Google Scholar 

  34. Rosenfalck P (1969) Intra- and extracellular fields of active nerve and muscle fibers. A physico-mathematical analysis of different models. Acta Physiol Scand 321:1–168

    CAS  Google Scholar 

  35. Stålberg E (1966) Propagation velocity in human muscle fibers in situ. Acta Physiol Scand 287:1–112

    Google Scholar 

  36. Stålberg E, Trontelj J (1979) Single fiber electromyography. Raven Press, Old Woking

    Google Scholar 

  37. Trayanova NA, Dimitrov GV (1982) Extracellular potentials in the proximity of the excitable fibers. Electromyogr Clin Neurophysiol 22:291–301

    PubMed  CAS  Google Scholar 

  38. Van Veen BK, Wolters H, Wallinga W (1993) The bioelectrical source in computing single muscle fiber action potentials. Biophys J 64:1492–1498

    Article  PubMed  Google Scholar 

  39. Wallinga W, Gielen FLH, Wirtz P, de Jong P, Broenink J (1985) The different intracellular action potentials of fast and slow muscle fibers. Electromyogr Clin Neurophysiol 60:539–547

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rodriguez-Falces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Falces, J., Navallas, J., Gila, L. et al. Influence of the shape of intracellular potentials on the morphology of single-fiber extracellular potentials in human muscle fibers. Med Biol Eng Comput 50, 447–460 (2012). https://doi.org/10.1007/s11517-012-0879-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0879-7

Keywords

Navigation