Skip to main content

Advertisement

Log in

Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

With the increasing interest of using inertial measurement units (IMU) in human biomechanics studies, methods dealing with inertial sensor measurement errors become more and more important. Pre-test calibration and in-test error compensation are commonly used to minimize the sensor errors and improve the accuracy of the walking speed estimation results. However, the performance of a given sensor error compensation method does not only depend on the accuracy of the calibration or the sensor error evaluation, but also strongly relies on the selected sensor error model. The best performance could be achieved only when the essential components of sensor errors are included and compensated. Two new sensor error models, with the concerns about sensor acceleration measurement biases and sensor attachment misalignment, have been developed. The performance of these two error models were evaluated in the shank-mounted IMU-based walking speed/inclination estimation algorithm with a comparison of an existing error model. The treadmill walking experiment, conducted at both level and incline conditions, demonstrated the importance of sensor error model selection on the spatio-temporal gait parameter estimation performance. Accurate walking inclination estimation was made possible with a newly developed sensor error model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aminian K, Najafi B, Bula C, Leyvraz P, Robert P (2002) Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech 35(5):689–699

    Article  PubMed  Google Scholar 

  2. Barbour N, Schmidt G (2001) Inertial sensor technology trends. IEEE Sens J 1(4):332–339

    Article  Google Scholar 

  3. Bebek O, Suster M, Rajgopal S, Fu M, Huang X, Cavusoglu M, Young D, Mehregany M, van den Bogery A, Mastrangelo C (2010) Personal navigation via high-resolution gait-corrected inertial measurement units. IEEE Trans Instrum Meas 59(11):3018–3027

    Article  Google Scholar 

  4. Brennan A, Zhang J, Deluzio K, Li Q (2011) Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal. Gait Posture 34(3):320–323

    Article  PubMed  CAS  Google Scholar 

  5. Catalfamo P, Ghoussayni S, Ewins D (2010) Gait event detection on level ground and incline walking using a rate gyroscope. Sensors 10(6):5683–5702

    Article  PubMed  Google Scholar 

  6. Cutti A, Ferrari A, Garofalo P, Raggi M, Cappello A, Ferrari A (2010) Outwalk: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48(1):17–25

    Article  PubMed  Google Scholar 

  7. Ferraris F, Grimaldi U, Parvis M (1995) Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers. Sens Mater 7(5):311–311

    Google Scholar 

  8. Greene B, McGrath D, O’Neill R, O’Donovan K, Burns A, Caulfield B (2010) An adaptive gyroscope-based algorithm for temporal gait analysis. Med Biol Eng Comput 48(12):1251–1260

    Article  PubMed  Google Scholar 

  9. Hartmann A, Murer K, de Bie R, de Bruin E (2009) Reproducibility of spatio-temporal gait parameters under different conditions in older adults using a trunk tri-axial accelerometer system. Gait Posture 30(3):351–355

    Article  PubMed  Google Scholar 

  10. Henriksen M, Lund H, Moe-Nilssen R, Bliddal H, Danneskiod-Samsře B (2004) Test-retest reliability of trunk accelerometric gait analysis. Gait Posture 19(3):288–297

    Article  PubMed  Google Scholar 

  11. Jasiewicz J, Allum J, Middleton J, Barriskill A, Condie P, Purcell B, Li R (2006) Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24(4):502–509

    Article  PubMed  Google Scholar 

  12. Khan A, Lee Y, Lee S, Kim T (2010) Accelerometer’s position independent physical activity recognition system for long-term activity monitoring in the elderly. Med Biol Eng Comput 48(12):1271–1279

    Article  PubMed  Google Scholar 

  13. Lau H, Tong K (2008) The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 27(2):248–257

    Article  PubMed  Google Scholar 

  14. Lee J, Park E (2011) Quasi real-time gait event detection using shank-attached gyroscopes. Med Biol Eng Comput 49(6):707–712

    Article  PubMed  Google Scholar 

  15. Li Q, Young M, Naing V, Donelan JM (2010) Walking speed estimation using a shank-mounted inertial measurement unit. J Biomech 43(8):1640–1643

    Article  PubMed  CAS  Google Scholar 

  16. Lotters J, Schipper J, Veltink P, Olthuis W, Bergveld P (1998) Procedure for in-use calibration of triaxial accelerometers in medical applications. Sens Actuat A: Phys 68(1–3):221–228

    Article  Google Scholar 

  17. Mayagoitia R, Nene A, Veltink P (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35(4):537–542

    Article  PubMed  Google Scholar 

  18. Miyazaki S (1997) Long-term unrestrained measurement of stride length and walking velocity utilizing a piezoelectric gyroscope. IEEE Trans Biomed Eng 44(8):753–759

    Article  PubMed  CAS  Google Scholar 

  19. Ojeda L, Borenstein J (2007) Non-GPS navigation for security personnel and first responders. J Navig 60(3):391–407

    Article  Google Scholar 

  20. Sabatini A (2006) Computational intelligence for movement sciences: neural networks, support vector machines and other emerging techniques. In: Inertial sensing in biomechanics: a survey of computational techniques bridging motion analysis and personal navigation. Idea Group Inc, pp 70–100

  21. Sabatini AM, Martelloni C, Scapellato S, Cavallo F (2005) Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 52(3):486–494

    Article  PubMed  Google Scholar 

  22. Scapellato S, Cavallo F, Martelloni C, Sabatini A (2005) In-use calibration of body-mounted gyroscopes for applications in gait analysis. Sens Actuat A: Phys 123:418–422

    Article  Google Scholar 

  23. Yang S, Li Q (2012) Imu-based ambulatory walking speed estimation in constrained treadmill and overground walking. Comput Methods Biomech Biomed Eng 15(3):313–322

    Google Scholar 

Download references

Acknowledgments

We would like to gratefully acknowledge the support from NSERC discovery grant and Queen’s SARC grant. We also thanks the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Laudanski, A. & Li, Q. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models. Med Biol Eng Comput 50, 383–393 (2012). https://doi.org/10.1007/s11517-012-0887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0887-7

Keywords

Navigation