Skip to main content

Advertisement

Log in

The Ornstein–Uhlenbeck third-order Gaussian process (OUGP) applied directly to the un-resampled heart rate variability (HRV) tachogram for detrending and low-pass filtering

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The heart rate variability signal derived from the ECG is a beat-to-beat record of RR-intervals and is, as a time series, irregularly sampled. It is common engineering practice to resample this record, typically at 4 Hz, onto a regular time axis for conventional analysis using IIR and FIR filters, and power spectral estimators, in the time and frequency domain, respectively. However, such interpolative resampling introduces noise into the signal and the information quality is compromised. Here, the Ornstein–Uhlenbeck third-order band-pass filter is presented which operates on data sampled at arbitrary time and preserves fidelity. The algorithm is available as open source code for MATLAB® (MathWorks™ Inc.) and supported by an interactive website at http://clinengnhs.liv.ac.uk/OUGP.htm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Al Ghunaimi B, Hossen A, Hassan MO (2004) Screening of obstructive sleep apnea based on statistical signal characterization of Hilbert transform of RRI data. Technol Health Care 12(1):67–78

    PubMed  Google Scholar 

  2. Clifford GD (2009) ECG statistics, noise, artectacts and missing data. In: Clifford GD, Azuaje F, McSharry P (eds) Advanced methods and tools for ECG data analysis, 1st edn. Artech House, Boston

  3. Eleuteri A, Fisher AC, Groves D, Dewhurst C (2012) An efficient time-varying filter for detrending and bandwidth limiting the heart rate variability (HRV) tachogram without resampling: MATLAB open source code and Internet web-based implementation. Comput Math Methods Med 2012. doi:10.1155/2012/578785

  4. Fisher AC (2010) Email contact for MatSOAP. a.c.fisher@liv.ac.uk

  5. Fisher AC, Eleuteri A (2010) Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/2000/NOTE-SOAP-20000508

  6. Fisher AC, Eleuteri A (2010) The OUGP internet resource. http://clinengnhs.liv.ac.uk/links1.htm

  7. Garcia-Gonzalez MA, Vazquez-Seisdedos C, Pallas-Areny R (2000) Variations in breathing patterns increase low frequency contents in HRV spectra. Physiol Meas 21(3):417–423

    Article  PubMed  CAS  Google Scholar 

  8. Golub G, Van Loan CF (1996) Matrix computations, 3rd ed. Johns Hopkins University Press, Baltimore

  9. Laguna P, Moody GB, Mark RG (1998) Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans Biomed Eng 45(6):698–715

    Article  PubMed  CAS  Google Scholar 

  10. Litvack DA, Oberlander TF, Carney LH, Saul JP (1995) Time and frequency domain methods for heart rate variability analysis: a methodological comparison. Psychophysiology 32(5):492–504

    Article  PubMed  CAS  Google Scholar 

  11. Malik M (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17(3):354–381

    Article  Google Scholar 

  12. Malik M, Camm AJ (1995) Heart rate variability. Futura Publishing Co Inc., USA. ISBN 9780879936075

    Google Scholar 

  13. Mitov IP (1998) A method for assessment and processing of biomedical signals containing trend and periodic components. Med Eng Phys 20(9):660–668

    Article  PubMed  CAS  Google Scholar 

  14. Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Programs Biomed 76(1):73–81

    Article  PubMed  Google Scholar 

  15. Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill International Editions, new York

  16. Porges S, Bohrer R (1990) The analysis of periodic processes in psychophysiological research. In: Cacioppo J, Tassinary L (eds) Principles of psychophysiology physical social and inferential elements, Cambridge University Press, Cambridge, pp 708–753

  17. Rybicki GB, Press WH (1995) Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. Phys Rev Lett 74(7):1060–1063

    Article  PubMed  CAS  Google Scholar 

  18. Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2002) An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 49(2):172–175

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, A.C., Eleuteri, A., Groves, D. et al. The Ornstein–Uhlenbeck third-order Gaussian process (OUGP) applied directly to the un-resampled heart rate variability (HRV) tachogram for detrending and low-pass filtering. Med Biol Eng Comput 50, 737–742 (2012). https://doi.org/10.1007/s11517-012-0928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0928-2

Keywords

Navigation