Skip to main content

Advertisement

Log in

Interactive segmentation of plexiform neurofibroma tissue: method and preliminary performance evaluation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Plexiform neurofibromas (PNs) are a major manifestation of neurofibromatosis-1 (NF1), a common genetic disease involving the nervous system. Treatment decisions are mostly based on a gross assessment of changes in tumor using MRI. Accurate volumetric measurements are rarely performed in this kind of tumors mainly due to its great dispersion, size, and multiple locations. This paper presents a semi-automatic method for segmentation of PN from STIR MRI scans. The method starts with a user-based delineation of the tumor area in a single slice and automatically segments the PN lesions in the entire image based on the tumor connectivity. Experimental results on seven datasets, with lesion volumes in the range of 75–690 ml, yielded a mean absolute volume error of 10 % (after manual adjustment) as compared to manual segmentation by an expert radiologist. The mean computation and interaction time was 13 versus 63 min for manual annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alnuweiri H, Prasanna V (1992) Parallel architectures and algorithms for image component labeling. IEEE Trans Pattern Anal Mach Intell 14:1014–1034

    Article  Google Scholar 

  2. Cai W, Kassarjian A, Bredella M, Harris G, Yoshida H, Mautner V, Wenzel R, Plotkin S (2009) Tumor burden in patients with neurofibromatosis types 1 and 2 and schwannomatosis: determination on whole-body MR images. Radiology 250:665–673

    Article  PubMed  Google Scholar 

  3. Colleweta G, Strzeleckib M, Mariettea F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91

    Article  Google Scholar 

  4. Corso J, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A (2008) Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 27(5):629–640

    Article  PubMed  CAS  Google Scholar 

  5. Dombi E, Solomon J, Gillespie AJ et al (2007) NF1 plexiform neurofibroma growth rate by volumetric MRI: Relationship to age and body weight. Neurology 68:643–647

    Article  PubMed  CAS  Google Scholar 

  6. Farmaki C, Marias K, Sakkalis V, Graf N (2010) Spatially adaptive active contours: a semi-automatic tumor segmentation framework. Int J Comput Assist Radiol Surg 5(4):369–384

    Article  PubMed  Google Scholar 

  7. Foo T, Hayes C, Kang YW (1992) Reduction of RF penetration effects in high field imaging. Magnet Reson Med 23:287–301

    Article  CAS  Google Scholar 

  8. Gerig G, Jomier M, Chakos M (2001) Valmet: a new tool for assessing and improving 3D object segmentation. Lect Notes Comput Sci 2208:516–523

    Article  Google Scholar 

  9. Huson S, Hughes R (1994) The neurofibromatoses: a pathogenetic and clinical overview. Chapman and Hall, London

    Google Scholar 

  10. Jager F, Hornegger J (2009) Nonrigid registration of joint histograms for intensity standardization in magnetic resonance imaging. IEEE Trans Med Imaging 28:137–150

    Article  PubMed  Google Scholar 

  11. Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892

    Article  Google Scholar 

  12. Lammert M, Friedman J, Kluwe L, Mautner V (2005) Prevalence of neurofibromatosis 1 in german children at elementary school enrollment. Arch Dermatol 141:71–74

    Article  PubMed  Google Scholar 

  13. Lingurarua MG, Yao J, Gautam R, Peterson J, Li Z, Linehan WM, Summers RM (2009) Renal tumor quantification and classification in contrast-enhanced abdominal CT. Pattern Recognit 42(6):1149–1161

    Article  Google Scholar 

  14. Mautner V, Asuagbor F, Dombi E, Fnsterer C, Kluwe L, Wenzel C, Widemann B, Friedman JM (2008) Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro-Oncology 10:593–598

    Article  PubMed  Google Scholar 

  15. Poussaint T, Jaramillo D, Chang Y, Korf B (2003) Interobserver reproducibility of volumetric mr imaging measurements of plexiform neurofibromas. AJR 180:419–423

    PubMed  Google Scholar 

  16. Prastawa M, Bullitt E, Bullitt N, Leemput K, Gerig G (2003) Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol 10:1341–1348

    Article  PubMed  Google Scholar 

  17. Prastawa M, Ho S, Gerig G (2004) A brain tumor segmentation framework based on outlier detection. Med Image Anal J 8(3):275–283

    Article  Google Scholar 

  18. Shaha M, Xiaoa Y, Subbannaa N, Francisb S, Arnoldb DL, Collinsb DL, Arbela T (2011) Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Med Image Anal 15:267–282

    Article  Google Scholar 

  19. Solomon J, Warren K, Dombi E, Patronas N, Widemann B (2004) Automated detection and volume measurement of plexiform neurofibromas in neurofibromatosis 1 using magnetic resonance imaging. Comput Med Imaging Graph 28:257–265

    Article  PubMed  Google Scholar 

  20. Solomon J, Butman JA, Sood A (2006) Segmentation of brain tumors in 4D MR images using the hidden markov model. Comput Methods Programs Biomed 84(2-3):76–85

    Article  PubMed  Google Scholar 

  21. Tucker T, Friedman J, Friedrich R, Funstere C, Mautner V (2009) Longitudinal study of neurofibromatosis 1 associated plexiform neurofibromas. J Med Genet 46:81–85

    Article  PubMed  CAS  Google Scholar 

  22. van Horssen P, Siebes M, Hoefer I, Spaan J, van den Wijngaard J (2010) Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome. Med Biol Eng Comput 48:735–744

    Article  PubMed  Google Scholar 

  23. Weisenfeld NL, Warfield SK (2004) Normalization of joint image-intensity statistics in MRI using the Kullback–Leibler divergence. Proceedings of IEEE international symposium on biomedical imaging: nano to macro (ISBI). vol 1, pp 101–104

  24. Williams V, Lucas J, Babcock M, Gutmann D, Korf B, Maria B (2009) Neurofibromatosis type 1 revisited. Pediatrics 123:124–133

    Article  PubMed  Google Scholar 

  25. Woodruff J (1999) Pathology of tumors of the peripheral nerve sheath in type 1 neurofibromatosis. Am J Med Genet 89:23–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Gilbert Israeli Neurofibromatosis Center (GINFC), for providing the real data and for supporting the medical aspects of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Weizman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weizman, L., Hoch, L., Ben Bashat, D. et al. Interactive segmentation of plexiform neurofibroma tissue: method and preliminary performance evaluation. Med Biol Eng Comput 50, 877–884 (2012). https://doi.org/10.1007/s11517-012-0929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0929-1

Keywords

Navigation