Skip to main content
Log in

Effect of heterogeneities in the cellular microstructure on propagation of the cardiac action potential

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cardiac arrhythmias are initiated in regions that undergo cellular remodeling as a result of disease. Using a sub-cellular model of myocardium, we studied the mechanism of block caused by tissue microstructure remodeling: cell geometry [quantified as length/width (L/W) cell ratio] and cell-to-cell coupling (G j ). Heterogeneities in cell L/W ratio and G j lead to block when excitability is reduced and the corresponding space constant λ (in the direction of propagation) increases by >40 %. Tissue architectures with elongated cells (i.e. large cell L/W ratios) that are better coupled (i.e. large G j ) are less prone to block at sites of regional heterogeneities in cell geometry and/or cell coupling than tissue architectures consisting of cells with smaller L/W ratios and/or poorer coupling. Whether an increase in tissue anisotropic ratio (ANR) is arrhythmogenic or not depends on the cellular mechanism of the increase: ANR leads to an increased risk of block when G j decreases, but to a decreased risk of block when cell L/W ratio increases. Our findings are useful to understand the mechanisms of block in cardiac pathologies that result in tissue architecture remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF (2004) Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 95(7):717–725

    Article  PubMed  CAS  Google Scholar 

  2. Akar FG, Nass RD, Hahn S, Cingolani E, Shah M, Hesketh GG, DiSilvestre D, Tunin RS, Kass DA, Tomaselli GF (2007) Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol 293(2):H1223–H1230

    Article  PubMed  CAS  Google Scholar 

  3. Anderson KP, Walker R, Urie P, Ershler PR, Lux RL, Karwandee SV (1993) Myocardial electrical propagation in patients with idiopathic dilated cardiomyopathy. J Clin Invest 92(1):122–140

    Article  PubMed  CAS  Google Scholar 

  4. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Sonnenblick EH, Anversa P (1995) The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 27:291–305

    Article  PubMed  CAS  Google Scholar 

  5. Cabo C, Boyden PA (2003) Electrical remodeling of the epicardial border zone in the canine infarcted heart: a computational analysis. Am J Physiol Heart Circ Physiol 284(1):H372–H384

    PubMed  CAS  Google Scholar 

  6. Cabo C, Boyden PA (2009) Extracellular space attenuates the effect of gap junctional remodeling on wave propagation: a computational study. Biophys J 96(8):3092–3101

    Article  PubMed  CAS  Google Scholar 

  7. Cabo C, Pertsov AM, Baxter WT, Davidenko JM, Gray RA, Jalife J (1994) Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circ Res 75(6):1014–1028

    Article  PubMed  CAS  Google Scholar 

  8. Cabo C, Pertsov AM, Davidenko JM, Baxter WT, Gray RA, Jalife J (1996) Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle. Biophys J 70(3):1105–1111

    Article  PubMed  CAS  Google Scholar 

  9. Cabo C, Yao J, Boyden PA, Chen S, Hussain W, Duffy HS, Ciaccio EJ, Peters NS, Wit AL (2006) Heterogeneous gap junction remodeling in reentrant circuits in the epicardial border zone of the healing canine infarct. Cardiovasc Res 72:241–249

    Article  PubMed  CAS  Google Scholar 

  10. Cooklin M, Wallis WRJ, Sheridan DJ, Fry CH (1998) Conduction velocity and gap junction resistance in hypertrophied, hypoxic guinea-pig left ventricular myocardium. Exp Physiol 83(6):763–770

    PubMed  CAS  Google Scholar 

  11. Coronel R (1994) Heterogeneity in extracellular potassium concentration during early myocardial ischaemia and reperfusion: implications for arrhythmogenesis. Cardiovasc Res 28(6):770–777

    Article  PubMed  CAS  Google Scholar 

  12. de Jong S, van Veen TA, van Rijen HV, de Bakker JM (2011) Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol 57(3):630–638

    Article  PubMed  Google Scholar 

  13. Eloff BC, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE, Rosenbaum DS (2001) High resolution optical mapping reveals conduction slowing in connexin43 deficient mice. Cardiovasc Res 51(4):681–690

    Article  PubMed  CAS  Google Scholar 

  14. Fast VG, Kleber AG (1995) Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model. Cardiovasc Res 29(5):697–707

    PubMed  CAS  Google Scholar 

  15. Frazier DW, Wolf PD, Wharton JM, Tang ASL, Smith WM, Ideker RE (1989) Stimulus induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest 83(3):1039–1052

    Article  PubMed  CAS  Google Scholar 

  16. Gough WB, Mehra R, Restivo M, Zeiler RH, el Sherif N (1985) Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps. Circ Res 57(3):432–442

    Article  PubMed  CAS  Google Scholar 

  17. Harvey PA, Leinwand LA (2011) Cellular mechanisms of cardiomyopathy. J Cell Biol 194(3):355–365

    Article  PubMed  CAS  Google Scholar 

  18. Hubbard ML, Ying W, Henriquez CS (2007) Effect of gap junction distribution on impulse propagation in a monolayer of myocytes: a model study. Europace 9(Suppl 6):vi20–vi28

    Article  PubMed  Google Scholar 

  19. Janse MJ, Kleber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49(5):1069–1081

    Article  PubMed  CAS  Google Scholar 

  20. Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69(4):1049–1169

    PubMed  CAS  Google Scholar 

  21. Jongsma HJ, Wilders R (2000) Gap junctions in cardiovascular disease. Circ Res. 86(12):1193–1197 (Review)

    Article  PubMed  CAS  Google Scholar 

  22. Joyner RW (1981) Mechanisms of unidirectional block in cardiac tissues. Biophys J 35(1):113–125

    Article  PubMed  CAS  Google Scholar 

  23. Kitamura H, Ohnishi Y, Yoshida A, Okajima K, Azumi H, Ishida A, Galeano EJ, Kubo S, Hayashi Y, Itoh H, Yokoyama M (2002) Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol 13:865–870

    Article  PubMed  Google Scholar 

  24. Kleber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84(2):431–488

    Article  PubMed  CAS  Google Scholar 

  25. Maron BJ, Epstein SE (1980) Hypertrophic cardiomyopathy. Recent observations regarding the specificity of three hallmarks of the disease: asymmetric septal hypertrophy, septal disorganization and systolic anterior motion of the anterior mitral leaflet. Am J Cardiol 45(1):141–154

    Article  PubMed  CAS  Google Scholar 

  26. Maron BJ, Wolfson JK, Roberts WC (1992) Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol 70(7):785–790

    Article  PubMed  CAS  Google Scholar 

  27. Nattel S, Maguy A, Bouter SL, Yeh Y-H (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87(2):425–456

    Article  PubMed  CAS  Google Scholar 

  28. Ohler A, Weisser-Thomas J, Piacentino V 3rd, Houser SR, Tomaselli GF, O’Rourke B (2009) Two-photon laser scanning microscopy of the transverse-axial tubule system in ventricular cardiomyocytes from failing and non-failing human hearts. Cardiol Res Pract, article id 802373. doi:10.4061/2009/802373

  29. Poelzing S, Rosenbaum DS (2004) Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol 287(4):H1762–H1770

    Article  PubMed  CAS  Google Scholar 

  30. Quan W, Rudy Y (1990) Unidirectional block and reentry of cardiac excitation: a model study. Circ Res 66(2):367–382

    Article  PubMed  CAS  Google Scholar 

  31. Satoh H, Delbridge LM, Blatter LA, Bers DM (1996) Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J 70(3):1494–1504

    Article  PubMed  CAS  Google Scholar 

  32. Seidel T, Salameh A, Dhein S (2010) A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys J 99:2821–2830

    Article  PubMed  CAS  Google Scholar 

  33. Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80(1):9–19

    Article  PubMed  CAS  Google Scholar 

  34. Spach MS, Dolber PC (1986) Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res 58(3):356–371

    Article  PubMed  CAS  Google Scholar 

  35. Spach MS, Heidlage JF (1995) The stochastic nature of cardiac propagation at a microscopic level. Electrical description of myocardial architecture and its application to conduction. Circ Res 76(3):366–380

    Article  PubMed  CAS  Google Scholar 

  36. Spach MS, Miller WT, Dolber PC, Kootsey JM, Sommer JR, Mosher CE (1982) The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res 50(2):175–191

    Article  PubMed  CAS  Google Scholar 

  37. Toure A, Cabo C (2010) Effect of cell geometry on conduction velocity in a subcellular model of myocardium. IEEE Trans Biomed Eng 57(9):2107–2114

    Article  PubMed  Google Scholar 

  38. Toyoshima H, Park YD, Ishikawa Y, Nagata S, Hirata Y, Sakakibara H, Shimomura K, Nakayama R (1982) Effect of ventricular hypertrophy on conduction velocity of activation front in the ventricular myocardium. Am J Cardiol 49(8):1938–1945

    Article  PubMed  CAS  Google Scholar 

  39. Varnava AM, Elliott PM, Baboonian C, Davison F, Davies MJ, McKenna WJ (2001) Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104(12):1380–1384

    Article  PubMed  CAS  Google Scholar 

  40. Wiegerinck RF, Verkerk AO, Belterman CN, van Veen TAB, Baartscheer A, Opthof T, Wilders R, de Bakker JMT, Coronel R (2006) Larger cell size in rabbits with heart failure increases myocardial conduction velocity and qrs duration. Circulation 113(6):806–813

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candido Cabo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toure, A., Cabo, C. Effect of heterogeneities in the cellular microstructure on propagation of the cardiac action potential. Med Biol Eng Comput 50, 813–825 (2012). https://doi.org/10.1007/s11517-012-0934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0934-4

Keywords

Navigation