Skip to main content
Log in

Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A bone fracture may lead to malunion of bone segments, which gives discomfort to the patient and may lead to chronic pain, reduced function and finally to early osteoarthritis. Corrective osteotomy is a treatment option to realign the bone segments. In this procedure, the surgeon tries to improve alignment by cutting the bone at, or near, the fracture location and fixates the bone segments in an improved position, using a plate and screws. Three-dimensional positioning is very complex and difficult to plan, perform and evaluate using standard 2D fluoroscopy imaging. This study introduces a new technique that uses preoperative 3D imaging to plan positioning and design a patient-tailored fixation plate that only fits in one way and realigns the bone segments as planned. The method is evaluated using artificial bones and renders realignment highly accurate and very reproducible (d err < 1.2 ± 0.8 mm and φ err < 1.8° ± 2.1°). Application of a patient-tailored plate is expected to be of great value for future corrective osteotomy surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Athwal GS, Ellis RE, Small CF, Pichora DR (2003) Computer-assisted distal radius osteotomy. J Hand Surg 28A(6):951–958

    Google Scholar 

  2. Bilić R, Kovjanić J, Kolundžić R (2005) Quantification of changes in graft dimension after corrective osteotomy of the distal end of the radius. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechosl 72:375–380

    Google Scholar 

  3. Carelsen B, Jonges R, Strackee SD, Maas M, Van Kemenade P, Grimbergen CA, Her M, Streekstra GJ (2009) Detection of in vivo dynamic 3-D motion patterns in the wrist joint. IEEE Trans Biomed Eng 56(4):1236–1244

    Article  PubMed  Google Scholar 

  4. Cartiaux O, Paul L, Docquier PL, Francq BG, Raucent B, Dombre E, Banse X (2009) Accuracy in planar cutting of bones: an ISO-based evaluation. Int J Med Robotics Comput Assist Surg 5:77–84

    Article  Google Scholar 

  5. Ciocca L, De Crescenzio F, Fantini M, Scotti R (2009) CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comp Med Imag Graph 33:58–62

    Article  CAS  Google Scholar 

  6. Croitoru H, Ellis RE, Prihar R, Small CF, Pichora DR (2001) Fixation-based surgery: a new technique for distal radius osteotomy. Comp Aid Surg 6:160–169

    Article  CAS  Google Scholar 

  7. Cronier F, Pietu G, Dujardin C, Bigorre N, Ducellier F, Gerard R (2010) The concept of locking plates. Orthop Traumatol Surg Res 956:S17–S36

    Article  Google Scholar 

  8. Cooney WP, Cobyns H, Linscheid RL (1980) Complications of Colles’ fractures. J Bone Joint Surg 62:613–619

    PubMed  Google Scholar 

  9. Dobbe JGG, Strackee SD, Schreurs AW, Jonges R, Carelsen B, Vroemen JC, Grimbergen CA, Streekstra GJ (2011) Computer-assisted planning and navigation for corrective distal radius osteotomy, based on pre- and intraoperative imaging. IEEE Trans Biomed Eng 58(1):182–190

    Article  PubMed  CAS  Google Scholar 

  10. Dobbe JGG, Du Pré KJ, Kloen P, Blankevoort L, Streekstra GJ (2011) Computer-assisted and patient-specific 3-D planning and evaluation of a single-cut rotational osteotomy for complex long-bone deformities. Med Biol Eng Comput 49:1363–1370

    Article  PubMed  CAS  Google Scholar 

  11. Hafez MA, Chelule KL, Seedhom BB, Sherman KP (2006) Computer-assisted total knee arthrosplasty using patient-specific templating. Clin Orth Rel Res 444:184–192

    Article  CAS  Google Scholar 

  12. Hankemeier S, Mommsen P, Krettek C, Jagodzinski M, Brand J, Meyer C, Meller R (2010) Accuracy of high tibial osteotomy: comparison between open- and closed-wedge technique. Knee Surg Sports Traumatol Arthrosc 18:1328–1333

    Article  PubMed  CAS  Google Scholar 

  13. Hollevoet N, Van MG, Van SP, Verdonk R (2000) Comparison of palmar tilt, radial inclination and ulnar variance in left and right wrists. J Hand Surg 25:431–433

    CAS  Google Scholar 

  14. Ibánes L, Schroeder W (2003) The insight segmentation and registration toolkit. Software guide. Kitware Inc., Clifton Park. ISBN 1-930934-15-7

    Google Scholar 

  15. Van de Kraats EB, Penney Tomaževič D, Van Walsum T, Niessen WJ (2005) Standardized evaluation methodology for 2D–3D registration. IEEE Trans Med Imag 24(9):1177–1189

    Article  Google Scholar 

  16. Lozano-Calderon SA, Brouwer KM, Doornberg JN, Goslings JC, Kloen P, Jupiter JB (2010) Long-term outcomes of corrective osteotomy for the treatment of distal radius malunion. J Hand Surg 35B:370–380

    Google Scholar 

  17. Menon MRG, Walker JL, Court-Brown CM (2008) The epidemiology of fractures in adolescents with reference to social deprivation. J Bone Joint Surg (Br) 90-B:1482–1486

    Google Scholar 

  18. Milner SA, Davis TRC, Muir KR, Greenwood DC, Doherty M (2002) Long-term outcome after tibial shaft fracture: Is malunion important? J Bone Joint Surg (Am) 84-A:971–980

  19. Murase T, Kunihiro O, Moritomo H, Goto A, Yoshikawa H, Sugamoto K (2008) Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 90(11):2375–2389

    Article  PubMed  Google Scholar 

  20. Miyake J, Murase T, Moritomo H, Sugamoto K, Yoshikawa H (2011) Distal radius osteotomy with volar locking plates based on computer simulation. Clin Orthop Relat Res 469:1766–1773

    Article  PubMed  Google Scholar 

  21. Oka K, Murase T, Moritomo H, Goto A, Sugamoto K, Yoshikawa H (2010) Corrective osteotomy using customized hydroxyapatite implants prepared by preoperative computer simulation. Int J Med Robotics Comput Assist Surg 6:186–193

    Google Scholar 

  22. Oka K, Murase T, Moritomo H, Goto A, Nakao R, Sugamoto K, Yoshikawa H (2011) Accuracy of corrective osteotomy using a custom-designed devise based on a novel computer simulation system. J Orthop Sci 16:85–92

    Article  PubMed  Google Scholar 

  23. Paley D (2005) Principles of deformity correction, 1st edn. Springer, Berlin. ISBN 3-540-41665-X

    Google Scholar 

  24. Patton MW (2004) Distal radius malunion. J Am Soc Surg Hand 4(4):266–274

    Article  Google Scholar 

  25. Paul L, Cartiaux O, Docquier PL, Banse X (2009) Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device. Int J Med Robot Comp Ass Surg 5:435–443

    Article  Google Scholar 

  26. Pearle AD, Kendoff D, Musahl V (2009) Perspectives on computer-assisted orthopaedic surgery: movement toward quantitative orthopaedic surgery. J Bone Joint Surg 92(Suppl 1):7–12

    Article  Google Scholar 

  27. Pichler W, Clement H, Hausleitner L, Tanzer K, Tesch NP, Grechenig W (2008) Various circular arc radii of the distal volar radius and the implications on volar plate osteosynthesis. Orthopedics 30(12):1192

    Google Scholar 

  28. Prommersberger KJ, Froehner SC, Schmitt RR, Lanz UB (2004) Rotational deformity in malunited fractures of the distal radius. J Hand Surg 29A:110–115

    Google Scholar 

  29. Rieger M, Gabl M, Gruber H, Jaschke WR, Mallouhi A (2005) CT virtual reality in the preoperative workup of malunited distal radius fractures: preliminary results. Eur Radiol 15:792–797

    Article  PubMed  Google Scholar 

  30. Roser SM, Ramachandra S, Blair H, Grist W, Carlson GW, Christensen AM, Weimer KA, Steed MB (2010) The accuracy of virtual surgical planning in free fibula mandibular reconstruction: comparison of planned and final results. J Oral Maxillofac Surg 68:2824–2832

    Article  PubMed  Google Scholar 

  31. Simpson AL, Ma B, Slagel B, Borschneck DP, Ellis RE (2008) Computer-assisted distraction osteogenesis by Ilizarov’s method. Int J Med Robotics Comput Assist Surg 4:310–320

    Article  CAS  Google Scholar 

  32. States RA, Pappas E (2006) Precision and repeatability of the Optotrak 3020 motion measurement system. J Med Eng Tech 30(1):11–16

    Article  CAS  Google Scholar 

  33. Vroemen JC, Dobbe JGG, Jonges R, Strackee SD, Streekstra GJ (2012) Three-dimensional assessment of bilateral symmetry of the radius and ulna for planning corrective surgeries. J Hand Surg (Am) 37A:982–988

    Article  Google Scholar 

  34. Westphal R, Winkelbach S, Wahl F, Gösling T, Oszwald M, Hüfner T, Krettek C (2009) Robot-assisted long bone fracture reduction. Int J Robot Res 28(10):1259–1278

    Article  Google Scholar 

  35. Wieland AWJ, Dekkers GHG, Brink PRG (2005) Open wedge osteotomy for malunited extraarticular distal radius fractures with plate osteosynthesis without bone grafting. Eur J Trauma 31:148–153

    Article  Google Scholar 

  36. Zheng G, Su Y, Liao G, Jiao P, Liang L, Zhang S, Liu H (2012) Mandible reconstruction assisted by preoperative simulation and transferring templates: cadaveric study of accuracy. J Oral Maxillofac Surg 70:1480–1485

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. G. Dobbe.

Appendix

Appendix

A patient-tailored plate is designed by virtually cutting the bone and temporary plate at a user-defined location and repositioning the distal plate segment using the correction matrix M c. (Fig. 2e). The cross section of the plate (Fig. 6a, Plane 0) is positioned repetitively within the gap such that it smoothly runs from the proximal plate segment to the distal plate segment. This is achieved by extracting the angles of rotation (φ x , φ y , φ z ) from the rotation matrix that orients the cross-sectional points in “Plane 0” to “Plane N” (Fig. 6a), and by linear interpolation of the rotation angles for intermediate planes. Positioning of these N planes within the gap is done using cubic Bezier interpolation between the starting point (P 0 ), at the centroid of the cross-sectional points, and the end point (P 3 = M c P 0 ). The control points of this Bezier curve (P 1) and (P 2) are positioned at P 1 = P 0 + cT 1 and P 2 = P 3 + cT 2, with T 1 and T 2 the average tangent vector of the (transformed) cross-sectional points in the direction as shown in Fig. 6c. These control points define the curvature of the Bezier path. With this definition of the Bezier parameters (P 0, P 1, P 2, P 3,), the centroids of the cross-sectional planes P(i) (i = [0, N]) follow a cubic Bezier curve:

$$ {\vec{\text{P}(}}i )= \left( {1 - \frac{i}{N}} \right)^{3} {\vec{\text{P}}}_{0} + 3\left( {1 - \frac{i}{N}} \right)^{2} \frac{i}{N}{\vec{\text{P}}}_{1} + 2\left( {1 - \frac{i}{N}} \right)\left( \frac{i}{N} \right)^{2} {\vec{\text{P}}}_{2} + \left( \frac{i}{N} \right)^{3} {\vec{\text{P}}}_{3,} \quad i \in [0,N] $$
(A.1)

A polygon mesh of the insert is created by tessellation between neighboring points (Fig. 6c).

Fig. 6
figure 6

a Creation of a plate insert by copying the cross section (Plane 0) to intermediate planes [0, N] showing smoothly varying orientations. b The centroid of these planes follows a cubic Bezier curve defined by a starting point (P 0), an end point (P 3) and two control points (P 1, P 2). c Tessellation between consecutive points yields a smooth polygon mesh of the insert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobbe, J.G.G., Vroemen, J.C., Strackee, S.D. et al. Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy. Med Biol Eng Comput 51, 19–27 (2013). https://doi.org/10.1007/s11517-012-0959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0959-8

Keywords

Navigation