Skip to main content
Log in

Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A biomechanical analysis of the constant peak displacement and constant peak force methods of cardiopulmonary resuscitation (CPR) has revealed that optimal CC performance strongly depends on back support stiffness, CC rate, and the thoracic stiffness of the patient being resuscitated. Clinically the results presented in this study suggest that the stiffness of the back support surfaces found in many hospitals may be sub-optimal and that a backboard or a concrete floor can be used to enhance CC effectiveness. In addition, the choice of optimal CC rate and maximum sternal force applied by clinicians during peak force CPR is ought to be based on a general assessment of the patient’s thoracic stiffness, taking into account the patient’s age, gender, and physical condition; which is consistent with current clinical practice. In addition, it is important for clinicians to note that very high peak sternal forces, exceeding the limit above which severe chest wall trauma and abdominal injury occurs, may be required for optimal CC during peak force CPR on patients with very stiff chests. In these cases an alternative CPR technique may be more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCrate :

Chest compression rate (cpm)

F max :

Maximum sternal force (N)

m 1 :

Sternal mass (g)

m 2 :

Thoracic mass (g)

μ 1 :

Sternal (i.e., rib) damping coefficient (N s/cm)

μ 2 :

Back support damping coefficient (N s/cm)

k 1 :

Sternal (i.e., rib) spring constant (N cm−1)

k 2 :

Back support spring constant (N cm−1)

r :

Residual (cm)

t :

Time (s)

x :

Displacement (cm)

x 1 :

Sternal displacement (cm)

x 1max :

Maximum sternal displacement (cm)

x 2 :

Back support displacement (cm)

ω :

Angular compression frequency (rad s−1)

References

  1. Abella BS, Edelson DP, Kim S et al (2007) CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system. Resuscitation 73(1):54–61

    Article  PubMed  Google Scholar 

  2. Babbs CF, Kern KB (2002) Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation 54:147–157

    Article  PubMed  Google Scholar 

  3. Babbs CF, Nadkarni V (2004) Optimizing chest compression to rescue ventilation ratios during one-rescuer CPR by professionals and lay persons: children are not just little adults. Resuscitation 61:173–181

    Article  PubMed  Google Scholar 

  4. Babbs CF, Meyer A, Nadkarni V (2009) Neonatal CPR: room at the top–A mathematical study of optimal chest compression frequency versus body size. Resuscitation 80:1280–1284

    Article  PubMed  Google Scholar 

  5. Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York, pp 39–665

    Book  Google Scholar 

  6. Boe JM, Babbs CF (1999) Mechanics of cardiopulmonary resuscitation performed with the patient on a soft bed versus a hard surface. Acad Emerg Med 6(7):754–757

    Article  PubMed  CAS  Google Scholar 

  7. Braga MS, Dominguez TE, Pollock AN et al (2009) Estimation of optimal CPR chest compression depth in children by using computer tomography. Pediatrics 124:69–74

    Article  Google Scholar 

  8. Cloete G, Dellimore KHJ, Scheffer C (2011) Comparison of experimental chest compression data to a theoretical model for the mechanics of cardiopulmonary resuscitation. Acad Emerg Med 18(11):1167–1176

    Article  PubMed  Google Scholar 

  9. Cloete G, Dellimore KHJ, Scheffer C, Smuts MS, Wallis LA (2011) Investigation of the impact of backboard orientation and size on chest compressions during cardiopulmonary resuscitation. Resuscitation 82(11):1064–1070

    Article  PubMed  CAS  Google Scholar 

  10. Dellimore KH, Cloete G, Scheffer C (2011) Towards optimum chest compression performance during constant peak displacement cardiopulmonary resuscitation. Med Biol Eng Comput 49(9):1057–1065

    Article  PubMed  Google Scholar 

  11. Dine CJ, Gersh RE, Leary M et al (2008) Improving cardiopulmonary resuscitation quality and resuscitation training by combining audiovisual feedback and debriefing. Crit Care Med 36(10):2817–2822

    Article  PubMed  Google Scholar 

  12. Edelson DP, Litzinger B, Arora V et al (2008) Improving in-hospital cardiac arrest process and outcomes with performance debriefing. Arch Intern Med 168(10):1063–1069

    Article  PubMed  Google Scholar 

  13. European Resuscitation Council (2010) Guidelines for resuscitation 2010 section 1: executive summary. Resuscitation 81:1219–1276

    Article  Google Scholar 

  14. Fenele MP, Maier GW, Kern KB et al (1988) Influence of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs. Circulation 77:240–250

    Article  Google Scholar 

  15. Fenici P, Idris AH, Lurie KG et al (2005) What is the optimal chest compression-ventilation ratio? Curr Opin Crit Care 11:204–211

    Article  PubMed  Google Scholar 

  16. Gruben KG, Guerci AD, Popel AS, Tsitlik JE (1993) Sternal force: displacement relationship during cardiopulmonary resuscitation. J Biomech Eng 115:195–201

    Article  PubMed  CAS  Google Scholar 

  17. Halperin HR, Guerci AD, Chandra N et al (1986) Vest inflation without simultaneous ventilation during cardiac arrest in dogs: improved survival from prolonged cardiopulmonary resuscitation. Circulation 74(6):1407–1415

    Article  PubMed  CAS  Google Scholar 

  18. Halperin HR, Tsitlik JE, Guerci AD et al (1986) Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation 73:539–550

    Article  PubMed  CAS  Google Scholar 

  19. Halperin HR, Chandra NC, Levin HR et al (1996) Newer methods of improving blood flow during CPR. Ann Emerg Med 27(5):553–562

    Article  PubMed  CAS  Google Scholar 

  20. Jung E, Lenhart S, Protopopescu V, Babbs C (2006) Optimal strategy for cardiopulmonary resuscitation with continuous chest compression. Acad Emerg Med 13(7):715–721

    Article  PubMed  Google Scholar 

  21. Jung E, Lenhart S, Protopopescu V, Babbs C (2008) Optimal control applied to a thoraco-abdominal CPR model. Math Med Biol 25(2):157–170

    Article  PubMed  Google Scholar 

  22. Kern KB, Sanders AB, Raife J et al (1992) A study of chest compression rates during cardiopulmonary resuscitation in humans: the importance of rate-directed chest compressions. Arch Intern Med 152:145–149

    Article  PubMed  CAS  Google Scholar 

  23. Kouwenhoven WB, Jude JR, Knickerbocker GG (1960) Closed-chest cardiac massage. J Am Med Assoc 173:1064–1067

    Article  CAS  Google Scholar 

  24. Krischer JP, Fine EG, Davis JH, Nagel EL (1987) Complications of cardiac resuscitation. Chest 92(2):287–291

    Article  PubMed  CAS  Google Scholar 

  25. Maltese M, Castner T, Niles D et al (2008) Methods for determining pediatric thoracic force-deflection characteristics from cardiopulmonary resuscitation. Stapp Car Crash J 52:83–105

    PubMed  Google Scholar 

  26. Nishisaki A, Nysaether J, Sutton R et al (2009) Effect of mattress deflection on CPR quality assessment for older children and adolescents. Resuscitation 80:540–545

    Article  PubMed  Google Scholar 

  27. Noordergraaf GJ, Paulussen IWF, Venema A et al (2009) The impact of compliant surfaces on in-hospital chest compressions: effects of common mattresses and a backboard. Resuscitation 80:546–552

    Article  PubMed  Google Scholar 

  28. Safar P, Escarraga LA, Elam JO (1958) A comparison of the mouth-to-mouth and mouth-to airway methods of artificial respiration with the chest-pressure arm-lift methods. N Eng J Med 258:671–677

    Article  CAS  Google Scholar 

  29. Tsitlik JE, Weisfeldt ML, Chandra N, Effron MB, Halperin HR, Levin HR (1983) Elastic properties of the human chest during cardiopulmonary resuscitation. Crit Care Med 11:685–692

    Article  PubMed  CAS  Google Scholar 

  30. Turner I, Turner S (2004) Optimum cardiopulmonary resuscitation for basic and advanced life support: a simulation study. Resuscitation 62:209–217

    Article  PubMed  CAS  Google Scholar 

  31. Wyckoff MH, Berg RA (2008) Optimizing chest compressions during delivery-room resuscitation. Semin Fetal Neonatal Med 13:1410–1415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran H. Dellimore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellimore, K.H., Scheffer, C. Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness. Med Biol Eng Comput 50, 1269–1278 (2012). https://doi.org/10.1007/s11517-012-0963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0963-z

Keywords

Navigation