Skip to main content
Log in

Effect of head posture on the healthy human carotid bifurcation hemodynamics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Head and neck postures may cause morphology changes to the geometry of the carotid bifurcation (CB) that alter the low and oscillating wall shear stress (WSS) regions previously reported as important in the development of atherosclerosis. Here the right and left CB were imaged by MRI in two healthy subjects in the neutral head posture with the subject in the supine position and in two other head postures with the subject in the prone position: (1) rightward rotation up to 80°, and (2) leftward rotation up to 80°. Image-based computational models were constructed to investigate the effect of posture on arterial geometry and local hemodynamics. The area exposure to unfavorable hemodynamics, based on thresholds set for oscillatory shear index (OSI), WSS and relative residence time, was used to quantify the hemodynamic impact on the wall. Torsion of the head was found to: (1) cause notable changes in the bifurcation and internal carotid artery angles and, in most cases, on cross-sectional area ratios for common, internal and external carotid artery, (2) change the spatial distribution of wall regions exposed to unfavorable hemodynamics, and (3) cause a marked change in the hemodynamic burden on the wall when the OSI was considered. These findings suggest that head posture may be associated with the genesis and development of atherosclerotic disease as well as complications in stenotic and stented vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anayiotos AS, Jones SA, Giddens DP, Glagov S, Zarins CK (1994) Shear stress at a compliant model of the human carotid bifurcation. J Biomech Eng 116:98–106

    Article  PubMed  CAS  Google Scholar 

  2. Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging 23(6):704–713

    Article  PubMed  Google Scholar 

  3. Aristokleous N, Seimenis I, Papaharilaou Y, Georgiou GC, Brott BC, Eracleous E, Anayiotos AS (2011) Effect of posture change on the geometric features of the healthy carotid bifurcation. IEEE Trans Inf Technol Biomed 15(1):148–154

    Article  PubMed  Google Scholar 

  4. Balossino R, Pennati G, Migliavacca F, Formaggia L, Veneziani A, Tuveri M, Dubini G (2009) Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions? Comput Methods Biomech Biomed Eng 12(1):113–123

    Article  CAS  Google Scholar 

  5. Bao X, Lu C, Frangos JA (1999) Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler Thromb Vasc Biol 19:996–1003

    Article  PubMed  CAS  Google Scholar 

  6. Bijari PB, Antiga L, Wasserman BA, Steinman DA (2011) Scan-rescan reproducibility of carotid bifurcation geometry from routine contrast-enhanced MR angiography. J Magn Reson Imaging 33(2):482–489

    Article  PubMed  Google Scholar 

  7. Cheng CP, Wilson NM, Hallett RL, Herfkens RJ, Taylor CA (2006) In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol 17(6):979–987

    Article  PubMed  Google Scholar 

  8. Cho YI, Back LH, Crawford DW (1985) Experimental investigation of branch flow ratio, angle, and reynolds number effects on the pressure and flow fields in arterial branch models. J Biomech Eng 107(3):257–267

    Article  PubMed  CAS  Google Scholar 

  9. Glor FP, Ariff B, Hughes AD, Verdonck PR, Barratt DC, Augst AD, Thom SA, Xu XY (2004) Influence of head position on carotid hemodynamics in young adults. Am J Physiol Heart Circ Physiol 287(4):H1670–H1681

    Article  PubMed  CAS  Google Scholar 

  10. Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY (2003) Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann Biomed Eng 31(2):142–151

    Article  PubMed  CAS  Google Scholar 

  11. Gonzales RS, Wick TM (1996) Hemodynamic modulation of monocytic cell adherence to vascular endothelium. Ann Biomed Eng 24(3):382–393

    Article  PubMed  CAS  Google Scholar 

  12. Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286(5):H1916–H1922

    Article  PubMed  CAS  Google Scholar 

  13. Hoi Y, Wasserman BA, Lakatta EG, Steinman DA (2010) Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J Biomech Eng 132(12):121008

    Article  PubMed  Google Scholar 

  14. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302

    Article  PubMed  CAS  Google Scholar 

  15. Lee SW, Steinman DA (2007) On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J Biomech Eng 129(2):273–278

    Article  PubMed  Google Scholar 

  16. Lee SW, Antiga L, Spence JD, Steinman DA (2008) Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347

    Article  PubMed  Google Scholar 

  17. LoGerfo FW, Nowak MD, Quist WC, Crawshaw HM, Bharadvaj BK (1981) Flow studies in a model carotid bifurcation. Arteriosclerosis 1:235–241

    Article  PubMed  CAS  Google Scholar 

  18. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Article  PubMed  CAS  Google Scholar 

  19. Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C (2003) In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging 17(4):410–420

    Article  PubMed  Google Scholar 

  20. Morbiducci U, Gallo D, Massai D, Consolo F, Ponzini R, Antiga L, Bignardi C, Deriu MA, Redaelli A (2010) Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J Biomech Eng 132(9):091005

    Article  PubMed  Google Scholar 

  21. Morbiducci U, Gallo D, Massai D, Ponzini R, Deriu MA, Antiga L, Redaelli A, Montevecchi FM (2011) On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J Biomech 44(13):2427–2438

    Article  PubMed  Google Scholar 

  22. Moyle KR, Antiga L, Steinman DA (2006) Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J Biomech Eng 128(3):371–379

    Article  PubMed  Google Scholar 

  23. Papaharilaou Y, Doorly DJ, Sherwin SJ (2002) The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J Biomech 35(9):1225–1239

    Article  PubMed  CAS  Google Scholar 

  24. Perktold K, Resch M, Peter RO (1991) Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech 24:409–420

    Article  PubMed  CAS  Google Scholar 

  25. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28:845–856

    Article  PubMed  CAS  Google Scholar 

  26. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2011) Heart disease and stroke statistics–2011 update: a report from the american heart association. Circulation 123(4):e18–e209

    Article  PubMed  Google Scholar 

  27. Steinman DA, Taylor CA (2005) Flow imaging and computing: large artery hemodynamics. Ann Biomed Eng 33(12):1704–1709

    Article  PubMed  Google Scholar 

  28. Steinman DA, Thomas JB, Ladak HM, Milner JS, Rutt BK, Spence JD (2002) Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn Reson Med 47(1):149–159

    Article  PubMed  Google Scholar 

  29. Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech 36:197–231

    Article  Google Scholar 

  30. Thomas JB, Milner JS, Rutt BK, Steinman DA (2003) Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann Biomed Eng 31(2):132–141

    Article  PubMed  Google Scholar 

  31. Tsao PS, Lewis NP, Alpert S, Cooke JP (1995) Exposure to shear stress alters endothelial adhesiveness. Role of nitric oxide. Circulation 92(12):3513–3519

    Article  PubMed  CAS  Google Scholar 

  32. Valibhoy AR, Mwipatayi BP, Sieunarine K (2007) Fracture of a carotid stent: an unexpected complication. J Vasc Surg Int Soc Cardiovasc Surg NA 45(3):603–606

    Google Scholar 

  33. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  PubMed  Google Scholar 

  34. Zhang Q, Steinman DA, Friedman MH (2010) Use of factor analysis to characterize arterial geometry and predict hemodynamic risk: application to the human carotid bifurcation. J Biomech Eng 132(11):114505

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was co-funded by the European Regional Development and the Republic of Cyprus through the Research Promotion Foundation (Project IPE/YGEIA/DYGEIA/0609/11 and DIAKRATIKES/CY-SLO/0609/01) and by grant GSRT-09FR37 of the General Secretariat for Research and Technology (GSRT), Greece.

Conflict of interest

The authors have no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Aristokleous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaharilaou, Y., Aristokleous, N., Seimenis, I. et al. Effect of head posture on the healthy human carotid bifurcation hemodynamics. Med Biol Eng Comput 51, 207–218 (2013). https://doi.org/10.1007/s11517-012-0985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0985-6

Keywords

Navigation