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Abstract 

In this paper, a simple and practical finite element (FE) model coupled to a quasi-brittle 

damage law to describe the initiation and progressive propagation of multiple cracks based on 

element deletion is developed in order to predict the complete force-displacement curve and the 

fracture pattern of a human proximal femur under quasi-static load. The motivation of this work 

was to propose a FE model for possible clinical use with a good compromise between 

complexity and capability of the simulation. The model considers a limited number of 

parameters that can predict proximal femur fracture in more adequate physical terms than 

criteria-based fracture models. Based on experimental results, different damage laws for cortical 

and trabecular bone are proposed to describe inelastic damage accumulation under excessive 

load. When the damage parameter reaches its critical value inside an element of the mesh, its 

stiffness matrix is set to zero, leading to the redistribution of the stress state in the vicinity of the 

damaged zone (crack initiation). Once a crack is initiated, the propagation direction is simulated 

by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed 

approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein 

[37] (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-

static load. The proposed finite element model leads to more physical results concerning the 

shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured 

edge.  
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1. Introduction 

 In order to predict human proximal femur fracture, linear and non-linear isotropic and 

anisotropic finite element (FE) models (Table 1) have been developed by several authors. For 

simplicity and due to the limited knowledge of the anisotropic behavior of bone, most FE models 

for femur fracture simulation considered the bone as inhomogeneous and isotropic material. 

Empirical density–elasticity relationships are generally applied to assign a single isotropic elastic 

modulus to every FE of the mesh driven by CT scans. Several recent approaches have been 

developed to assign the anisotropic orientation of bone as a function of its cortical and trabecular 

structural morphology and mechanical behavior. These approaches include orientation methods 

using anatomical directions corresponding to the bone shape [7, 26, 38, 90], variation in the CT 

Hounsfield unit values based on micromechanical considerations [30, 66, 73, 76], bone 

remodeling simulation prior to fracture prediction to obtain the bone orthotropic orientation and 

elastic assignment [11, 17, 20, 40, 51], and a procedure to orientate orthotropic properties in a 

proximal femur FE model using the directions of the principal stresses produced by a 

physiological load scheme [64].  Empirical relations between the orthotropic constants and bone 

density have been suggested by several authors [29–34]. Nevertheless, the determination of 

material trajectories related to the trabecular orientations from clinical quantitative computed 

tomography (QCT) scans remains an open question [64, 71, 74, 86].  

 Several FE analyses with inhomogeneous isotropic material properties have been shown 

to predict the strains and displacements on the surface of the proximal femur with high accuracy 

when compared with in vitro experiments [35, 48, 67, 76]. The same FE models with 

inhomogeneous orthotropic material properties produce results similar to those obtained with 

isotropic material properties [3, 58, 83]. 

 Previous FE models have applied different uncoupled fracture criteria including von 

Mises equivalent stress, equivalent stress, maximum principal strain criterion Hill’s criterion and 

Drucker-Prager criterion in order to predict the onset of human proximal femur fracture under 
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excessive load.  Such criteria are limited in general to the prediction of the initiation of local 

bone failure only. They do not take into consideration the complete quasi-brittle fracturing 

process of proximal femur and the loss of bone material stiffness generated by progressive 

damage accumulation prior to fracture. Recently, several authors investigated the fracture of 

cortical bone based on fracture mechanics concepts [2, 47, 72, 78, 81, 82, 89] but failed to 

predict the complete fracture pattern of bone since these methods are restricted to the problem of 

a single dominant idealized planar crack. Recently, element softening methods have been 

developed by Wang et al. [84] to study 2D iliac crest bone specimens failure. A principal tensile 

strain of 0.005 was used as the tissue failure criterion and when the principal strain of one 

element reached the failure criterion, the element was marked as ‘‘failed’’ and the bone material 

elastic modulus in the element was set to a postfailure modulus. Bone microcracks were 

identified using the list of damaged elements and the rate of change in FE element stiffness due 

to microcracks accumulation were calculated using linear regression relationship. 

  

 In spite of the large number of FE studies dealing with bone fracture under monotonic 

load (Table 1), there is still a lack of practical and simple FE models that simulate the complete 

and realistic behavior of bone from the elastic stage till complete fracture. Several studies 

showed that bone exhibits a quasi-brittle material behavior [5, 14, 16, 32-34, 62] or brittle 

behavior [31, 43, 68, 88] depending mainly on the deformation rate applied and the bone 

properties. Therefore, more suitable physical models are still lacking to describe the brittle to 

quasi-brittle fracture behavior of human femur. Such models can be developed by incorporating 

the continuum damage mechanics (CDM) concept in order to predict the progressive initiation 

and propagation of cracks, leading to complete fracture of the bone organ.  

 In the present work, an isotropic FE model coupled to a quasi-brittle damage law was 

developed in order to simulate fracture of human proximal femurs under quasi-static load and 

predict the complete force-displacement curve and the final fracture pattern of the proximal 
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femur under one-legged stance load. The element deletion technique was applied in order to 

simulate the progressive fracturing process of bone. 

 The current isotropic strategy is motivated by: (i) Some published comparative studies 

claiming that the assigned orthotropic material model has a limited effect on the FE result at 

bone organ level compared to the isotropic one [3, 58, 83], and (ii) the complexity regarding the 

assignment of the local anisotropic directions for every FE of the mesh and their corresponding 

anisotropic material properties [64, 77]. 

 

 Table 1 summarizes the main differences between the CDM model presented here and 

previously published ones.  

 

 
Models 

reported in    

[4, 6, 10, 19, 24, 
31, 35-37, 39, 44-

46, 55, 68, 77] 

 [7, 26, 38,90]  [66, 73, 76, 77]  [11, 17, 20, 
40, 51] 

 [43, 64]. Present model 
(CDM approach) 

Behaviour 
law 

Isotropic with 
homogenous/ 
inhomogenous 

properties 

Anisotropic  with homogenous/inhomogenous properties Isotropic behavior law 
coupled to quasi-
brittle damage law 

Material 
properties 

assignment 

Empirical relation between density and material properties 

Orthotropic 
direction 

assignment 

 
Not applicable 

Methods using 
anatomical 
directions 

corresponding to 
the bone shape 

Variation of the 
CT Hounsfield 

unit values based 
on 

micromechanical 
considerations 

Bone 
remodeling 
simulation 

prior to 
fracture 

prediction 

Based on the 
directions of the 

principal 
stresses 

 
Not applicable 

Fracture 
modeling 

Uncoupled fracture criteria Coupled damage law 

Prediction 
(Force) 

Maximum fracture force Not predicted Complete force-
displacement curve 

Prediction 
(Fracture 
pattern) 

Not predicted Complete fracture 
pattern 

 

Table 1. Comparison between the main previously published femur fracture FE models based on 

fracture criteria and the present FE model based on CDM. 

 

 To illustrate the potential of the proposed approach, the left femur of a male (age 61) 

previously investigated by Keyak and Falkinstein [37] (Model B) was simulated till complete 

fracture under one-legged stance load. The proposed FE model leads to more precise and 

realistic results concerning the shape of the force-displacement curve and the fracture pattern.  
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2. Methods 

 The model is based on an isotropic behaviour law coupled to a quasi-brittle damage law 

to describe the progressive initiation and propagation of cracks within human proximal femur 

under quasi-static load. The proposed damage laws were fitted based on experimental results 

performed on trabecular and cortical bone which distinguish between tension and compression. 

The model was implemented into the Abaqus/Standard code using the subroutine UMAT [1]. 

 

2.1. Quasi-brittle behavior law of bone under quasi-static load 

 

 In general, at a low load rate (quasi-static regime), the proximal femur behaves as a 

quasi-brittle material with a non-linear behavior till complete fracture [6, 19, 36-37]. In this case, 

quasi-brittle behavior laws are well suited to represent the non-linear behavior before complete 

fracture observed during quasi-static proximal fracture experiments.  Nagaraja et al. [53] used 

micro-CT and sequential fluorescent staining to assess local trabecular bone damage under 

varying levels of uniaxial compression. The authors performed incremental compression loads 

under controlled strain levels on fifteen fluorescent stained cylindrical specimens of bovine bone.  

After each strain step, specimens were micro-CT imaged in order to track the progression of 

local diffuse damage in different cross sections. Lastly, the measured diffuse damage area for 

each section normalized by its bone area was averaged for all sections.  A similar approach was 

applied by Parsamian [57] to assess the damage law of human cortical bone. 

 The damage behavior of cortical and trabecular bone corresponds to the generation of 

microcracks [80], which leads to a reduction in stiffness, energy dissipation, and permanent 

strains, and may result in bone failure [34]. The damage threshold stress which coincides with 

the elastic limit or yield stress quantifies the onset of damage behavior. After having reached the 

ultimate stress at fracture, the stress decreases gradually for increasing strain which corresponds 
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to a softening stage till complete fracture. This phase corresponds to the generation of 

microcracks which lead to a reduction in stiffness [87].  

 The development and growth of cracks can induce anisotropy in the mechanical behavior 

of the material [87].  In the context of CDM, this leads to the introduction of high order tensorial 

damage variables, requiring the identification of 3D damage laws and the corresponding material 

properties [15, 42]. In the current work, due to lack of data related to anisotropic damage laws 

and bone behavior, a simple practical FE model based on isotropic damage variables is proposed. 

The focus here was to provide a proximal femur engineering modeling approach rather than to 

develop a sophisticated (complicated) fracture model which would be hard for clinicians to 

apply. Such an isotropic simulation approach represents a good compromise between complexity 

and capability of the simulation, given the limited number of model parameters and the 

availability of experimental data compared to anisotropic bone behavior [3, 58, 83].  

 Although bone tissue has been shown to behave as a viscoelastic inelastic damageable 

material for a large range of strain rates [21, 23], rate-dependent effects have a moderate impact 

on physiological strain rates as they occur during normal daily activities (� 1 Hz) [21]. Hence, in 

the quasi-static load regime (low strain rate), bone viscosity can be neglected.  

 Therefore, in the quasi-static regime and neglecting viscosity effects, the stress-strain 

relation of elasticity based damage mechanics is expressed by [15, 42]: 

 

( ) klijklij CD εσ −= 1                   (1) 

 

where D
 
denotes the damage variable, ijσ  the stress components, klε  the strains and ijklC  are 

the elasticity tensor components. 

 Relation (1) shows that the damage variable acts as a stiffness reduction factor. For 

increasing damage, the effective stiffness moduli ( ) ijklCD−1 decrease. 
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 The growth of the quasi-brittle damage variable is controlled by the damage threshold 

parameter κ , defined by:  

 

 ( )
eqεκ max=                   (2)  

where ( )max
 
denotes the maximum of the equivalent strain measure eqε  reached during the 

load history. 

The equivalent strain eqε
 
is expressed by:  

 

 eqε  = 
ijijεε

3

2
                          (3)  

 

ijε  denote the stress components. 

 

 Damage growth depends on a damage loading function in terms of the strain components 

expressed by Mazars et al. [50]: 

 

( ) ( )00 ,max, εκεεε −= eqeqf                  (4) 

 

( )0,max εκ  denotes the greatest value of κ  and 0ε . 

 

where 0ε  is the initial value of κ  when damage starts. If the loading function f  is negative, 

damage does not develop. During monotonic loading, the parameter κ  grows (it coincides with 

eqε ) and during unloading and reloading it remains constant:  

0<f  : No damage growth and the material behavior is elastic.  

0≥f : Damage growth and reduction of stiffness. 
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When the condition ( 0≥f ) is satisfied, the growth of damage is governed by an evolution 

law which is expressed in the general form [15, 42]: 

 

( )ijeqeqDgD σεε ,,, �� =                  (5) 

 

2.2.  Damage laws of trabecular and cortical bone  

 

 Considering the experimental results of Wolfram et al. [87] performed on 251 cylindrical 

trabecular bone samples obtained from human vertebrae (T1-L3)  and the results performed on 

human cortical bone by Parsamian [57] (Fig. 1), an experimentally fitted damage law can be 

expressed in the general form: 

�
�

�
�

�

≥=

<<=

≤=

feqc

feq

n

eqc

eq

DD

DD

D

εε

εεεε

εε

;

;

;0

0

0

                                                 (6) 

cD , n  and fε
 
are respectively the critical damage at fracture, the damage exponent and the 

strain at fracture which can be assessed based on experimental results reported in [57, 87]      

(Fig. 1). 

 The constants in Eq. (6) were determined by a trial and error optimization procedure to 

improve the agreement between the fitted and experimental damage laws of Fig.1-a and 1-b. 

 

 

 

 

 

 

 



9 

 

Strain level (%) 
1ε  2ε  3ε  

4ε  5ε  

In tension 0.4 0.6 1 1.6 2.4 

In compression 0.4 0.7 1.4 2.5 4 

 

          

(a) Experimental averaged damage in tension and compression performed on 251 human vertebrae trabecular 

specimens [87] and computed fitted damage laws in compression and tension based on the experimental results.  

 

  

(b) Experimental averaged damage law for human cortical bone performed on fourteen cortical core specimens [57] 
and the corresponding fitted damage law. 

 

Figure 1. Damage laws for human trabecular and cortical bone.  

 

 In addition, numerous studies show that damage threshold strains and stresses of 

trabecular and cortical bone tissue are different in tension and compression [13, 33-34, 61-62, 

87]. Therefore, to account for the asymmetrical bone yields, the strain at fracture is given by: 

 
��

�
�
�

==

==

nCompressioinDDand

TensioninDDand
C

cc

C

ff

T

cc

T

ff

εε

εε
                                               (7) 

T

fε
 
and C

fε
 
are the tensile and compressive strains at fracture respectively. 

T

cD  and 
C

cD  are critical damage values at fracture in tension and compression. 

 

Fitted law ( 25.1650ε=D ) 

Fitted law : 25.1870 ε=D  

Fitted law ( 2620ε=D ) 
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2.3. Crack propagation simulation 

 

 A practical and sufficiently accurate way to represent fracture is the so-called 'kill 

element' technique [27-28]. In CDM, there is no difference between crack initiation and 

propagation. Both of them result from the failure of an element of the mesh. Thus, crack 

initiation and propagation are studied in a unified approach [15, 42].  

A similar approach was applied by MacNeil and Boyd [49] to develop a non-linear FE 

model to predict human distal radius strength. A yield criterion was retained based on maximum 

compressive and tensile yield strains incorporated into the constitutive model. When the tissue 

maximum principal tensile or compressive strain exceeded the yield values, the elastic properties 

of the tissue were reduced by 95%. 

 The technique developed here distinguishes between tension, shearing and compression 

loading modes as follows:  

In tension: 

When the damage parameter reaches its critical value 
T

cD  inside an element, its stiffness 

matrix is set to zero, leading to the redistribution of the stress state in the vicinity of the fractured 

zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the 

propagation of the broken elements of the mesh. At continuum level, the local critical damage 

value in tension is generally equal to 1 ( 0.1≈
T

cD ) [56]. To avoid numerical convergence 

problems, the critical damage value at fracture was set to 95.0=
T

cD .  

In compression and shearing: 

When the kill element method is used in compressive or shearing regions, it is necessary to 

model the self-contact in compression/shearing of the gap created by the element deletion.  The 

alternative is to keep the elements, but to reduce their stiffness to a low, but not null value. In 

compression and shearing, the critical damage value at fracture was set to 5.0=
C

cD  [28].  
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2.3.1. Regularization of the crack propagation dependency on mesh size 

 

 In the constitutive law of conventional CDM there is no intrinsic material characteristic 

length, which means that crack propagation results are dependent on the mesh size [52, 63, 79]. 

When the mesh is refined during damage FE analysis, crack growth prediction becomes more 

accurate in that the displacement gradients which describe the discontinuities become stronger. 

Consequently, the predicted critical damage at fracture occurs faster, leading to faster crack 

propagation [1]. Therefore, when conducting a FE simulation of crack propagation, the physical 

crack length ( frxL ) must be considered in relation with the local FE mesh characteristic length (

FEL ). It has been reported that such an approach minimizes significantly the crack propagation 

dependency on the mesh size [52, 63, 79]. 

An alternative and simple method to ensure the objectivity of the numerical model in 

relation with the physical cracking process and the mesh dependence problem consists in 

weighting (linear form) the strain at fracture as a function of a characteristic FE length (
FEL ) and 

the crack length ( frxL ) in the form [1]:  

 

 ��
�

�
��
	

A
=

−

FE

frxT

truef

T

f
L

L
εε                (8-a) 

 
��
�

�
��
	

A
=

−

FE

frxC

truef

C

f
L

L
εε

               

(8-b) 

 

( )2

1

elemFE AL =   for 2D problems             (9-a) 

( )3

1

elemFE VL =    for 3D problems             (9-b) 

 

 

where 
T

truef −ε  and 
C

truef −ε  denote respectively, the true bone material measured strain at fracture in 

tension and compression which can be assessed based on experimental results [57, 87]. 

elemA  and elemV  denote respectively, the area of the FE (in 2D problems) and the volume of the 

FE (in 3D problems).  
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 Note that the FE characteristic length 
FEL is referred to the parameter (CELENT) by 

Abaqus code [1] and that it is computed at every increment by Abaqus. 

 Average crack lengths found in bones are typically 100 microns long [72]. The 

characteristic length frxL
 
was therefore set to ( mmL frx 1.0= ). 

 In addition, the characteristic length calculation is based only on the element geometry. 

As a result, some level of mesh sensitivity remains related to the cracking direction. Therefore, 

elements with an aspect ratio of one were selected in the current work. The proposed mesh-

dependency regularization method is recommended by the Abaqus code [1] for crack 

propagation problems to ensure non-dependency of the fracture results on the finite element 

mesh.  

 

2.4. Mesh sensitivity to critical damage at fracture 

 Because of uncertainty concerning the critical damage at fracture parameters (
T

cD and 

C

cD ), a sensitivity analysis (SA) was performed to investigate the impact of the factors’ 

sensitivities on the femur fracture force. To perform SA, either a one-factor or a multi-factor SA 

approach can be used. One-factor sensitivity analysis is useful in investigating the impact of one 

parameter varying in the model, while multi-factor SA examines the impact of two or more 

different parameters changing simultaneously on the model responses. Multi-factor SA generally 

demands a huge amount of calculation time. In addition, it should be noted that the presentation 

and interpretation of multi-factor SA becomes increasingly complex as the number of parameters 

involved increases. In the current work, a limited preliminary one-factor SA was performed in 

which only one model parameter (
T

cD or 
C

cD ) value was varied by a given percent (Table 3) 

while the other parameter was kept at its reference values. For each parameter change, a fracture 

simulation was performed and the proximal femur fracture force was computed. The analysis 

consisted of 12 runs for every critical damage parameter change (Table 3).  
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 Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 
Critical damage at fracture in 

tension:
T

cD  

 
0.95 

(Reference) 

 
0.76 

 
0.8 

 
0.855 

 
0.9 

 
1 

Critical damage at fracture in 

compression:
 

C

cD  

 
0.5 

(Reference) 

 
0.4 

 
0.45 

 
0.55 

 
0.6 

 
0.65 

Force at fracture (kN) 8.2 6.55 7.4 8,77 9.18 11.2 

 

Table 3. Six selected values of critical damage at fracture to investigate the model sensitivity on 

the predicted mechanical response. 
T

cD
 
values were  -20%, -15%, -10%, -5%, 0%  and +5%        

(
C

cD
 
kept equal to 0.5) and 

C

cD  values were -20%, -10%, 0% , +10%, +20%  and +30 % (
T

cD
 

kept equal to 0.95). 

 

3. Fracture simulation of proximal femur under one-legged stance quasi-static load  

 

 In the present work, the ex-vivo experimental test performed previously by Keyak and 

Falkinstein [37] (Model B) (Fig. 2-a) was simulated. The authors tested the left femur of a male 

(age 61) under one-legged stance load till complete fracture.  

 In the present case, the 3D FE model was generated automatically from the geometry of 

the femur of a 61 year old male scanned to obtain a set of slices by QCT using software 

developed in-house based on a two-step procedure. First, the contours of the femur were 

extracted from the CT scan. Based on these contours, the surface of the bone was reconstructed, 

from which, in a second step, a FE mesh with 33150 parabolic tetrahedral elements was built 

(Fig. 2-b).  Note that the FE femoral geometry retained here was not that used in the 

experimental tests. The geometry and mechanical properties of each individual femur are 

different in terms of mechanical response and fracture generated by applied loads. Nevertheless, 

the same bone properties of the same age were assigned and the overall structure of the proposed 

femur fracture modeling approach will remain unchanged whatever the specific characteristics of 

the femur under examination. The aim here was not to simulate the fracture behavior of Keyak 

and Falkinstein’s femur nor to perform a direct comparative study with experimental results.  
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 The 3D model is partitioned into trabecular bone and cortical bone with the Hounsfield 

(HU) scale: HU>600 is taken as the cortical region [92] (Fig. 2-c). While the QCT measurement 

of human femur distinguishes between cortical and trabecular bone, partition of the femur into 

trabecular and cortical regions based on the empirical separation threshold (HU>600) may 

generate a certain inaccuracy in the cortical bone thickness, which can play an important role in 

bone resistance to fracture [9]. The accuracy of the cortical thickness measurement with QCT 

depends on the spatial resolution of the CT system, image noise, the positioning of specimens 

and the image processing software [59]. Also, Lee et al. [41] and Popescu et al. [60] reported that 

the spatial registration between CT scans of a patient's organ and the computer model of the 

organ is still a critical step in most computer-aided models accuracy. There is evidence that both 

bone regions individually contribute to bone strength because of their different material 

properties. Therefore, accurate imaging methods are needed to generate accurate representative 

FE femur models. 

 

 

 

 

 

 

 

 (a) 3D model of Keyak and Falkinstein [37].          (b) Present 3D model.                      (c) Cross section showing femur partition   

                     into cortical and trabecular regions. 

Figure 2. FE model of the left proximal femur of subject B (male, age 61) generated from QCT 

scan data obtained in vitro. The 3D model is partitioned into trabecular bone and cortical bone 

with the Hounsfield (HU) scale: HU>600 is taken as the cortical region [92]. Displacement was 

applied to the femoral head, as indicated by the arrows, and the distal portion of the model was 

restrained [37]. 
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 Nodal displacements 20° from the shaft axis within the plane containing the shaft and 

cervical axes were applied incrementally to the top surface of the femur head till complete 

fracture and the model was restrained distally. Movement perpendicular to the applied 

displacements was permitted. 

 The same constitutive laws were used for trabecular and cortical bone but with different 

material averaged homogenized properties (Table 2).   

 

� Notation Cortical Trabecular Source 

General parameters     

Elastic modulus E (GPa) 15 3 [37] 

Poisson ratio  ν  0.3 0.4 [37] 

Age  Age 61 61 [37] 

Damage law parameters 

Critical damage at fracture 
in tension 

T

cD  
0.95 

 
0.95 

 
[56] 

Critical damage at fracture 
in compression 

C

cD  
0.5 0.5 [28] 

Damage exponent  n 1.25 2 [87] 

Damage strain threshold  
0ε  

0.001  0.001  [87] 

Strain at fracture               
in tension 

T

truef −ε
 

0.0157 0.025 [57, 87]  
 

Strain at fracture               
in compression 

C

truef −ε
 

0.025 0.04 [57, 87]  
 

 

Table 2. Material properties for bone used for the simulation. 

 

4. Results  

 

The predicted FE force–displacement curve based on Keyak and Falkinstein's specimen is 

plotted in Fig.3. The calculation time was about 15 min using an 8 Gb computer. 

A typical experimental force-displacement curve of the tested specimen was reported by 

Keyak in [36] (Fig. 3). The curve predicted in the present study shows the same trend for curve 

shape and onset of yielding and fracture as the reported experimental one. The FE-based curve 

exhibits a sharp drop in force during failure that was nearly always observed during mechanical 

testing. 
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Figure 3. Predicted and experimental force-displacement curves obtained by Keyak reported in 

[36] and the present FE model. Point B indicates the occurrence of yielding. Point C indicates the 

occurrence of numerical fracture. From C to D, the cracks propagate rapidly, leading to the drop 

of the curve (Complete fracture of the femur). 

 

The propagation of the cracks and the distribution of the quasi-brittle damage within the 

femur in relation to the force-displacement curve position is plotted in Fig. 4.  In the yielding 

stage (B), the crack is initiated locally at the superior cortex located at the maximum tensile 

strain. After the yielding phase, the crack continues to grow rapidly, following a perpendicular 

path to the surface, leading to complete separation of the proximal femur. The results shown in 

Fig.4 indicate that the predicted fracture process occurred in two steps: (i) development of an 

initial macroscopic crack in the superior neck (Fig. 4) which corresponds to a local maximum 

tensile stress; (ii) development of a second macroscopic crack in the inferior femoral neck which 

corresponds to a local maximum compressive stress. The failure mechanism associated with a 

compressive stress state in the inferior region is the result of a material failure involving yielding 

when a shearing stress is superimposed on the compressive stress generated by the applied 

vertical displacement. In normal gait, the greatest stresses occur in the subcapital and mid-

femoral neck regions [46]. Within these regions, maximum compressive stresses occur inferiorly 

and smaller magnitude tensile stresses occur superiorly [46]. 

 

 

C 

B 

D 
A 
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Figure 4. Crack propagation sequences in relation to the force-displacement curve and quasi-

brittle damage distribution. 

 The predicted complete fracture pattern of the femur is given in Figure 5. Depending on 

the boundary conditions, femoral geometry and the bone properties, different fracture patterns 

can be observed experimentally and the one obtained here corresponds to a subcapital fracture 

with stage II of the Garden classification (complete fracture with non-displacement). The 

stance configuration has been shown in previous studies to produce maximum shear stresses 

in the femoral neck region in a manner consistent with clinical subcapital fractures [12, 69] 

similar to the predicted one. This fracture pattern prediction is a useful decision-making tool 

to assist the surgeon in choosing a patient-specific operative treatment.  

 

                   

               

Figure 5. Predicted fracture pattern from different angles and quasi-brittle damage distribution. 
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4.1. Sensitivity analysis 

The results obtained from the SA simulations are plotted in Fig. 6. 

 

Figure 6. Fracture force versus the variation in the critical damage value                           

in compression and tension. 

 

The results revealed that variation in the critical damage generates a significant linear 

variation in the fracture force. An increase in the critical damage leads to an increase in the 

fracture force. This can be related to the fact that the critical damage value plays the main role on 

the onset of crack initiation and propagation within bone tissue. Lower values of critical damage 

lead to an early cracking process and then to a decreased force at fracture, whereas an increase in 

these parameters generates an increased resistance to fracture and therefore an increase in the 

fracture force. Predicted results revealed that the fracture patterns were very similar, and were 

not significantly affected by variation in the parameters. However, the rate of crack propagation 

increased with decreasing critical damage, suggesting that bone fracture may range from quasi-

brittle to brittle patterns depending on the bone material properties. From a material point of 

view, bone mineralization combined to fatigue damage accumulation has the combined effects of 

stiffening the tissue while making it more brittle. A bone that is highly mineralized is stiff and 

brittle and will require much less energy to fracture [14]. In addition, it has been proved that in 

elderly people, fatigue microcracks colocalize within highly mineralized regions of cortical bone 

tissue [65, 85]. The critical damage value at fracture can represent these combined 
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mineralization-fatigue damage effects in the framework of CDM. In conclusion, the sensitivity 

analysis shows that the precise identification of critical damage at fracture is necessary to 

increase the reliability of the prediction.  

 

5. Discussion 

 

 The curve shape and onset of yielding of the predicted force-displacement curve shows 

the same trend as that observed experimentally [36]. The FE-based curve exhibits the sharp drop 

in force during failure that was nearly always seen during mechanical testing in the quasi-static 

experiment (low strain rates). A more physical approach to determine the value of the fracture 

force is to consider the maximum force from the force–displacement curve before the drop due 

to propagation of the cracks. The results of this paper show that the force-displacement curve 

predicted using the proposed model is more adequate than the results presented in [36-37], 

suggesting that a quasi-brittle isotropic model can predict plausible results related to the force-

displacement curve. This result is in agreement with Verhulp et al.’s [83] findings. The authors 

suggested that the transverse modulus, introduced by assigning orthotropic material properties, 

does not play a very important role when physiological loading conditions such as single-legged 

stance are considered, since bone architecture is adapted to those conditions, but that differences 

between the isotropic and orthotropic models can be substantially larger for non-physiological 

loading such as lateral falls. Recently, patient-specific high order finite-element (FE) models of  

four human femurs based on quantitative QCT with inhomogeneous orthotropic and isotropic 

material properties were compared by Trabelsi and Yosibash [91, 92].  The authors compared the 

FE results to experimental observations to identify the influence of material properties on the 

models’ predictions. They concluded that the strains and displacements computed by both 

models (inhomogeneous orthotropic and isotropic) match the FE results well, and both are in 

close agreement with the experimental results.  
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 The predicted fracture pattern corresponds to the path of the cracks after total separation 

of the fractured finite elements of the mesh. The present results predicted a progressive fracture 

process depending on the femur head displacement value (Fig. 4). The predicted crack path 

follows an oblique line with an angle to the horizontal plane greater than 60° (Pauwels type III) 

from the inner surface of the neck (basal) to the outer surface towards the greater trochanter.                   

 A comparison between the predicted fracture patterns and experimental results is given in    

(Fig. 7). Although the loading conditions and femur geometries were different, a similar 

subcapital fracture pattern was obtained by Duchemin et al. [18] and Tanner et al. [70] during in 

vitro experiments performed on human femur under one-legged stance load.  

 

 

 

 

(a)  Predicted fracture location by the current FE model. (b)  Subcapital fractured human femur specimen [18]. 

 

Figure 7.  Comparison between predicted fracture pattern and experimental location of the femur 

fracture from Duchemin et al. [18]. 
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 The prediction of failure onset in human proximal femur at the organ level has instigated 

several research studies in recent years. In the literature basically two general approaches can be 

found: (i) post-processed fracture criteria (Table 1) and (ii) fracture mechanics based approaches 

[2, 47, 78, 81, 84, 89]. Both methods are limited to describing the progressive initiation and 

propagation of multiple cracks within the bone leading to complete fracture. Recently, several 

anisotropic viscoelastic behavior laws coupled to damage for macroscopic bone at the organ 

level have been developed by various authors [22, 25, 54, 93-94]. However, the main limitations 

of application of these models are: (i) these sophisticated models need a large number of 

parameters (anisotropy, viscosity and damage) that are not available in the published literature 

and are very complicated to measure experimentally; (ii) techniques allowing for the simulation 

of crack initiation and propagation processes have not been developed, and (iii) the models have 

not been validated by simulation of a complete fracture (force-displacement curve and fracture 

pattern) of the human proximal femur. 

 The results predicted from FE simulations in the present study should be interpreted in 

accordance with the limiting assumptions of the model. 

 The first limitation to be considered is that only one femoral geometry was validated and 

although the modeled femur belonged to a person in the same age range as the femurs employed 

in the experimental tests, the femur was not the same in the two cases. More specific femur 

geometries based on QCT scans will be used in future work.  

 A second limitation lies in the application of the isotropic homogeneous hypothesis. It is 

well known that human femur is anisotropic and heterogeneous. A number of empirical 

relationships were proposed by several authors to convert the CT number of every FE of the 

mesh to bone material properties such as elastic modulus, strain at fracture and yield stress. 

However, the determination of material trajectories related to the trabecular orientations from 

clinical quantitative computed tomography (QCT) scans remains an open question and is 
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difficult to apply in the framework of daily clinical applications. In addition, several 

investigations showed that in the case of one-legged stance, only local differences (strains, 

stresses and displacement) were observed and that the whole mechanical response of the femur 

(fracture force and fracture location) was quite similar [35, 48, 67, 76, 83, 91]. Verhulp et al. 

[83] suggested that differences between the isotropic and orthotropic models can be substantially 

larger for non-stance loading such as lateral falls. While the model proposed here can be 

extended to include material behavior and damage anisotropy, the overall structure of the 

proposed femur fracture modeling approach will remain unchanged.  

 The third limitation of the present study is that only one loading case (stance) was 

available for experimentation and no meaningful statistical analysis can be performed to 

substantiate the conclusions. Other loading configurations that induce high compressive and 

shear stresses and strains must also be considered in experiments to further validate the failure 

criteria in compression/shear. Also, further specific methods of assessing the material and 

fracture properties of femur are needed as these properties vary between anatomical locations 

[8].  

 These limitations do not detract from the importance of the proposed CDM based femur 

fracture simulation.  There will still be a need to perform FE simulations to predict the fracture 

conditions of human proximal femurs under a given boundary risk (stance, side fall). This study 

exemplifies that the current CDM approach is an enhanced, practical and simple model that can 

be applied in clinical computer-aided decision making. Further experimental tests are needed for 

validation and to investigate the anisotropic mechanical behavior of human femur, as well as 

reliable numerical mapping methods to assign anisotropic directions and the corresponding 

heterogeneous material properties. Also, before potential clinical implementation, further 

sensitivity analysis and validation is needed by performing several experiments with different 

bone samples and boundary conditions. 
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